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Abstract 

This paper reports the mathematical modelling of electrochemical processes in 
the Søderberg aluminium electrolysis cell. We consider anode shape changes, 
variations of the potential distribution and formation of a gaseous layer under the 
anode surface.  Evolution of the reactant concentrations is described by the 
system of diffusion-convection equations while the elliptic equation is solved for 
the Galvani potential. We compare its distribution with the CO2 density and 
discuss the advantages of the finite volume method and the marker-and-cell 
approach for mathematical modelling of electrochemical reactions. 
Keywords: aluminium reduction, electrochemical reaction, gaseous layer, 
mathematical modelling, finite volume method. 

1 Introduction 

In aluminium reduction cells the carbon anode is placed in the upper part of the 
bath parallel to the liquid aluminium layer at the bottom, which acts as the 
cathode. The electrolyte between these electrodes consists of cryolite melt 
Na3AlF6 and alumina Al2O3 dissolved in it; it may also contain such admixtures 
as AlF3, CaF2 and others. Dissolving of alumina in the bulk of the cell may be 
described as follows: 

Na3AlF6 + Al2O3 ↔ 3Na+ + 3AlOF2 
-.          (1) 

     Being driven by the electric field, the diffusion and the force of gravity, the 
ions AlOF2- reach the electrodes. There they donate and accept the electric 
charges. The cathode process is:  

3AlOF2
- + 6e = 2Al +6F- + AlF4-,      (2) 
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while the anode process looks as: 
3AlOF2

- - 6e + 3/2 C = 3/2 CO2 + 3Al3+ + 6F-,             (3) 
where e equals the charge of a single electron. Aluminium is deposited at the 
cathode; simultaneously the CO2 layer is being formed along the lower horizon-
tal side of the carbon anode, which is consumed in this reaction. 
     Unlike the conducting liquid metal layer at the bottom, the side walls of the 
cell are covered with ledge, which is a good insulator. As a result, most of the 
electric current goes between the cathode and the horizontal part of the anode. It 
should be emphasised that the conductivity of an electrolyte strongly depends of 
its composition. In particular, the increase of the CO2 concentration immediately 
under the anode surface causes an increase of ohmic resistance in this area and 
leads to the surge of the cell voltage caused by the formation of an insulating 
layer and to the consequent breakdown of this layer. This phenomenon is known 
as the anode effect. 
     Many investigators have carried out mathematical modelling of aluminium 
electrolysis. In [1–2], for example, the authors dealt mainly with the magneto-
hydrodynamic (MHD) instability problem and therefore studied the electrolyser 
behaviour during approximately the first minute after switching on; for this 
reason they could completely ignore electrochemical reactions. Simulation of the 
electric field in different parts of the cell and the anode current density 
distribution was performed using the finite difference, finite elements and the 
finite volume methods [3–8]. The current distribution in the electrolyte and the 
variation of the anode shape with time for periods of several days were 
considered in [4–7]. Never the less, numerical investigation of the simultaneous 
variations of electrical current and ion concentrations inside the cell have never 
been performed. 
     In this paper we combine the approach of [6], which consists in solving the 
equations for the electric fields in the anode, cathode and the electrolyte under 
steady state conditions, with our own approximation of the electrochemical 
reaction and the transport of reactants. We solve a 2D problem for the Laplace 
equation coupled with a system of the convection-diffusion equations through 
use of the boundary conditions. Therefore our problem becomes non-stationary. 
We study the time period of about one hour and observe the formation of the 
CO2 boundary layer and the variation of the Galvani potential caused by it. 

2 Theory 

We consider a 2D vertical cross section of an aluminium reduction cell and 
calculate the electrical field and the concentrations of the reactants in the cell. 
The temperature is supposed to be constant and equal to 960ºC; the influence of 
the magnetic field on the electrical field and concentrations is ignored. We also 
do not simulate the formation of the gas bubbles, but assume that the spreading 
of CO2 in the sub-anode layer is diffusive. 
     We denote the Galvani potential of the electrical field as φ and the concen-
trations of AlOF2- and CO2 as c1 and c2 respectively. Initially the anode is 
rectangular and the concentration of CO2 is zero in the whole cell. According to 
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[6], after the voltage is applied to the electrodes, the potential φC at the cathode 
surface is given by 

CC jc  ,      (4) 

where jC is the cathode current density and the coefficient c=8·10-2 Ohm·cm2, 
and the anode surface potential φA is given by 

)lg( ArevA jbaEU  ,      (5) 

where jA=0.75A·cm-2 is the averaged anode current density; a=0.50 V and 
b=0.25V decade-1 are the Tafel coefficients of the reaction (3) valid for the 
electrolyte that contains 81 wt% Na3AlF6, 3 wt% Al2O3, 11 wt% AlF3, 5 wt% 
CaF2 at 960˚C [6]; Ucell is the cell potential and Erev=1.23V is the reversible 
electrode potential. The distribution of the electrical field in the cell is described 
by  

0))(( 2   gradcdiv .               (6) 

where σ(c2) is the electrolyte conductivity. We assume that it depends on the 
concentration of CO2 in the following way: 

)),exp(1()()( 20102 cc        (7) 

     Here σ0=2.0·100 (Ohm·cm)-1 and σ1=1.0·10-6 (Ohm·cm)-1 are the specific 
conductivities of pure electrolyte and pure CO2 at 960˚C; α=3·10-1 is an 
empirical parameter. We suppose that the side walls of the cell are electrical 
insulators as well as the upper electrolyte surface around the anode, because all 
these surfaces are covered with insulating ledge. This supposition and the eqns 
(4)-(5) give us the full set of boundary conditions for φ: 
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where ν is the normal vector to the boundary. The electrode processes (2) and (3) 
run in accordance with the Faraday law; therefore the concentrations c1 and c2 
satisfy the following equations at the cathode and anode surfaces: 
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where nC=3 and nA=4 are the numbers of electrons participating in the cathode 
and anode processes; D1 = D2 ≈ 1.0·10-5 cm2s-1 are the diffusion coefficients [9]-
[10]; ν is the normal vector to the electrode surface and F is the Faraday's 
constant. Inside the cell concentrations satisfy the convection–diffusion 
equations [11–13]: 
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where m=-1 is the electric charge of the AlOF2- ion measured in the electron 
charge units. The reactants do not permeate through the side walls of the cell; 
therefore the boundary conditions for c1 and c2 at them look as follows: 
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where ν is the normal vector to the walls. Finally we should take into account the 
changes of the electrodes [6] during the electrochemical reaction. From Faraday's 
law it follows that the rate of the cathode vertical shift is 
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where M1 and ρ1 are the molar mass and the density of aluminium, while the rate 
of the anode shift in the direction orthogonal to its surface is 
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where M2 and ρ2 are the molar mass and the density of carbon. It should be 
mentioned that the cathode surface remains horizontal, because it is the surface 
of the liquid aluminium pool and the normal vector to it remains vertical, while 
the anode surface changes its shape, and the direction of its normal vector varies. 
We study rather small periods of time, around one hour, so the anode 
consumption is practically negligible, though we take it into account as well. 
Yet, unlike [4–7], we do not look for the steady state anode shape.  

3 Finite volume approximation 

We use the finite volume method for numerical approximation of the eqns (4)-
(14). The whole area is treated as a set of rectangular blocks – see Fig.1 
 
 
 
 
 
 
 
 
 
 

Figure 1: Block of the grid. 
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     The blocks, or elementary volumes, form the grid. The blocks are numbered 
with two indexes, i and j, in the horizontal and vertical direction respectively. 
The horizontal axes is denoted as x and the vertical one - as z. The sizes of the 
block along these axes are denoted as Δx and Δz. The values of φ, c1, c2 and σ 
are located in the centre of the block and are supposed to be constant in it. The 
current density vector j has the horizontal and vertical components: j=(jx, jz); 
these components are assigned to the centres of the block sides; see Fig.1. Ohm's 
law in vector notation gives us the relation between φ and j: 
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     The eqns (15) are approximated on the grid in the following way:  
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     Similar approximations are done for jx- and jz-. The eqn (6) may be rewritten 
as an integral of the current density normal to the block boundary: 

,0),( 
S

dSj               (18) 

where S is the boundary of the block and ν is its normal vector, and therefore is 
approximated as 

.0)()(   xjjzjj zzxx    (19) 

     The eqns (11)-(12) are treated in the same manner: given the concentration c 
(where c stands for c1 or c2) in the centre of the block, we approximate the con-
centration gradient h=(∂c/∂x, ∂c /∂z) at the centres of the block sides: 
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     Again similar approximations are done for hx- and hz-. Then the divergences 
in eqns (11-12) are treated as the integrals of the normal components of their 
arguments over the block boundary as it was done with the eqns (18-19). Finally 
for approximation of the time derivatives in the left-hand side of the eqns (11-12) 
we apply the symmetrical difference scheme. We replace the time derivatives 
with appropriate finite differences: 
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and equate them to half-sums of the right hand side approximations on the next 
and current time layers. The obtained system of algebraic equations is solved 
together with (18) using Seidel’s iterative method. This scheme approximates the 
original equations with the second order of accuracy with respect to t, x, z and is 
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unconditionally stable [14]. Besides it guarantees the conservation of current and 
matter: no artificial sources or drains of electric charges and reagents may appear 
during computation [6, 14].  
     All elementary volumes are divided into three types: A (anode), B (electroly-
te) and C (cathode) blocks (see Fig.2). Eqns (18-19) may be written only for 
blocks B, because the electrodes (that is, blocks A and C) are equipotential and 
contain only carbon and aluminium, while blocks B contain a mixture of ions 
and molecules, AlOF2- and CO2 in particular.      
 

 

Figure 2: Scheme of the electrolyser. 

     Those blocks of types A and C that are situated at the electrolyte-electrode 
border are used for approximating the boundary conditions given by eqns (8) and 
(16). The electrode surfaces are determined in the following way [15]: we 
introduce special markers (imaginary particles) that are originally placed in the 
centres of those blocks of type B that are adjacent to the blocks of types A and C. 
The coordinates of these markers are found from eqns (14) and (15) so they 
delimitate the border. As soon as any of these particles leaves the B-type block 
and enters the A-type or C-type one, the type of the entered block is changed to 
B. If the particle leaves the B-type block for another B-type one (as it happens at 
the cathode surface), the empty block is assigned the type of the adjacent non-B-
type block (in the considered problem it's always C). 

4 Results and discussion 

We considered the aluminium reduction cell section one meter wide and half-
meter high (Lx=Lz=50 cm at Fig.2). Initially the depth of the cathode aluminium 
pool is 5 cm; horizontal and vertical sizes of the carbon anode are 70cm and 
30cm respectively; the gap between the anode and the side walls and the distance 
between the electrodes equals 15 cm. We use the rectangular grid containing 100 
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blocks vertically and 200 blocks horizontally; it gives us  Δx=Δz=5·10-1 cm. The 
step Δt is taken equal to 1 second and 104 time layers are computed in a single 
series, which gives us nearly 3 hours of the physical time. In Figure 3 we 
demonstrate the equipotential lines of φ with the step 0.4V for t=1 sec. The 
distances between these lines are practically equal. It proves that the conductivity 
of electrolyte at this moment doesn’t vary in the whole volume of the cell. The 
boundary conditions for φ are given by eqn (8); it imposes ∂φ/∂ν =0 along the 
walls and the upper anode boundary. 
     However, the distribution of the potential is different for t = 1 hour. The same 
equipotential lines for t = 1 hour are shown in Fig.4. It is easy to see that now the 
greatest voltage drop occurs in a narrow region directly below the anode. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Equipotential lines in the electrolyte (units in V) for t=1 sec. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Equipotential lines in the electrolyte (units in V) for t=1 hour. 
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Figure 5: Contours of the CO2 concentration for t=1 hour. The levels: 1 – 
1·10-6 mol/cm3, 2 – 1·10-5 mol/cm3, 3 – 5·10-5 mol/cm3. 

     The anode potential also starts growing. These results are easily explained by 
considering the concentration of CO2 in the bath. Initially there is no CO2 in the 
cell. It appears as a result of the anode process (3) and forms a layer with low 
specific conductivity, as it is shown in Fig.5. 
     Comparing Fig. 4 and 5, we see that the voltage drop region coincides with 
the zone of high CO2 concentration. The change of the anode shape is rather 
small and may be observed mainly in the corners of the electrode. It agrees with 
previous experimental and numerical results [6–8]; it takes 6 to 8 days to reach 
the constant anode shape. Never the less, the amount of carbon, consumed during 
the first hour, is enough to form a layer of CO2, sufficient for transform the 
electric current distribution inside the cell. 

5 Conclusions 

It follows from the above discussion and numerical results that even a simple 
convective-diffusive model of concentration behaviour mechanism gives realistic 
results and yields a satisfactory description of the formation of the gaseous layer 
under the anode surface. The model may be improved by adding the electrolyte 
circulation and electromagnetic forces; yet we hope that it will not change the 
main conclusions. The finite volume method proves to be a flexible and 
sufficiently accurate numerical technique for solving both the equations for the 
Galvani potential and the reactant concentrations. The marker-and-cell approach 
makes it possible to outline the electrode surfaces easily. 
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