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Abstract 

The boundary element method (BEM) involves field nodes interacting with each 
other.  Solving the ensuing matrix equations often requires an iterative solver to 
be used at a cost that scales with the second power of the number of nodes per 
iteration.  This limits the size of the problem that can be solved.  The fast 
multipole method (FMM), introduces hubs to reduce the number of direct 
interactions between field nodes in the BEM.  The cost of calculating the   
matrix-vector multiplication using the FMM scales linearly with problem size.  
This paper contains a brief mathematical description of the FMM for Laplace’s 
equation in which a Taylor series expansion is used to model Green’s function.  
The computational performance of the FMM applied to modelling an impressed 
current cathodic protection (ICCP) system of a naval vessel is then investigated 
and the results compared to those of a commercial BEM solver and experimental 
(physical scale model) results.  For this relatively small example model, it is 
shown that the cost benefit of the FMM is eight times greater than that of the 
commercial solver.  Greater savings will be obtained on larger models.  The 
results confirm that larger, more detailed, corrosion problems can be solved 
faster using the FMM.  It is also shown that the capabilities of the FMM offer the 
choice between reduced processing time and enhanced accuracy.  This provides 
the user with the opportunity to sacrifice accuracy in order to run less 
computationally expensive problems, for example during parametric studies. 
Keywords:  boundary element methods, fast multipole method, ICCP system. 
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1 Introduction 

ICCP systems exploit the electrochemical nature of corrosion and the 
establishment of cathode-anode regions on the ship.  Cathodes (exposed metal 
regions on the hull, rudder and propeller) are protected regions and anodes are 
either discrete components of sacrificial metal or electron source points 
positioned along the underwater hull at specific locations.  For a ship at sea, the 
wetted surface area of the hull and the appendages such as bilge keel, rudder and 
propeller, are the cathodes, which require CP.    
     A typical ICCP system consists of non-sacrificial noble anodes connected to 
power supplies, reference cells to monitor hull potential state and a controller to 
adjust the current output of the anodes.  By ensuring that the on-board power 
supply provides controllable anodic current to inert anodes, the ICCP system 
inhibits corrosion of a material that would otherwise act as an anode by forcing it 
to behave cathodically.  The ideal system is designed with anodes located so 
current is evenly distributed to ensure that a uniform voltage is maintained for all 
points on the underwater hull.  In reality, cathodes created by paint damage, 
components made of non-similar materials, geometric features and openings in 
the hull result in a varied profile.  
     In the evaluation of material or system performance an appropriate material 
characterisation is necessary.  In the case of electrochemical corrosion, the 
sensitivity of the electrical current-electrical potential relationship to 
environmental and electrolyte characteristics must be considered when defining 
an appropriate characterisation.  The accuracy of corrosion prediction, whether 
based on analytical, experimental or computational analysis, will depend on how 
well the system defined in the analysis matches both the real structure and the 
environment surrounding the structure.   
     Polarisation, which for present purposes may be characterised as the 
relationship between electrical current and electrical potential, is an observed 
behaviour resulting from the combined effects of multiple oxidation and 
reduction reactions and is usually non-linear.  This often complex behaviour 
between electrical current and potential severely complicates the process of 
corrosion prediction and sensitivity studies can be used as a method for 
determining the suitability of polarisation relationships. 

2 Ship geometry  

The geometry used in this study is the same as that used by DeGiorgi et al [1].  It 
is representative of navy ship hulls with one propeller and one rudder located 
along the port-starboard centerline.  The ship is outfitted with a 2 zone ICCP 
system.  Anode placement, power supply sizing, and reference cell locations are 
defined based on established design rules.   
     In [1], the authors used the boundary element code FNREMUS [2] to 
compare the performance of a 2 zone ICCP system for four zonal operational 
combinations.  The focus of this study will be for the case of normal operating 
condition in which both forward and aft zones are fully functional. In [1], the 
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authors compared computational results for this case with those obtained using 
physical scale modelling (PSM) for the same problem.  PSM is a physics based 
experimental process used to design and evaluate ICCP systems.  Details of this 
approach can be found in [3]. 
     The authors have duplicated the geometry, ICCP system, material 
configuration, material properties and loading conditions defined in [1].  The 
ship hull used is representative of the type of ship that can be found in the US 
Navy but is not a duplicate of any active ship.  The ICCP system is a conceptual 
system similar to that which may be found on US Navy ships.  The ship hull 
boundary element mesh (Figure 1) is identical to that found in [1].  The 
commercial code PATRAN [4] was used to generate the ship hull mesh.  Only 
the portion below the design waterline is included in the model.  Results are 
calculated for the minimum damage (3% bare material concentrated in the 
docking blocks and propeller) static flow condition.  The intent is not to create a 
new analysis of the design but to compare solver CPU capabilities on a standard 
published problem.  The ship model is submerged in a large container of 
seawater representing infinite expanse of open ocean.  The electrolyte is modeled 
as scaled (1/96) seawater with a conductivity of 5.69 x 10-2 Siemens/m.  Material 
properties are identical to those used in [1].  Further details on material property 
definitions can be found in [5]. A reference cell set value of -0.85 V Ag/AgCl 
electrode is used in the analysis. 

 

 

 

Figure 1: Boundary element mesh. 

3 ICCP controller model 

The solution algorithm is an iterative process in which the anode current for each 
iteration is determined from the difference between the reference cell’s set 
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potential and achieved potential at the previous iteration. The relationship 
between potential and current can be a simple linear gain, a Proportional-
Integral-Derivative (PID) type control or a more complex algorithm, and can 
take account of maximum supply currents or other physical constraints of the 
ICCP system. At each iteration the currents at all anodes are adjusted to 
minimize the difference between set and achieved potential at each reference 
cell.  This involves employing another iterative process around the (usually) non-
linear material polarisation relationship. 
     The surface potential on a vessel has traditionally been calculated at each 
iteration by employing the boundary element method (BEM) to numerically 
solve Laplace’s equation.  Boundary element techniques require solving a system 
of equations for which the computational cost scales with the second power of 
the problem size.  This becomes prohibitively large as the number of nodes for a 
particular problem increases.  As will be discussed in the following section, the 
fast multipole method (FMM) reduces this computational and storage cost by 
approximating the integrals within the BEM. 

Table 1:  ICCP system details-scale geometry dimensions, [1]. 

  Frame Below 
Waterline (cm) 

Off Centerline 
(cm) Symmetry 

49.9 2.3 1.8 Port & 
Starboard Forward Zone 

Anodes 
189.1 2.8 4.6 Port & 

Starboard 

Forward Zone 
Reference Cells 103.7 3.3 1.0 Port & 

Starboard 

279.4 2.8 4.3 Port & 
Starboard 

368.8 0.7 3.8 Port 
Aft Zone 
Anodes 

379.5 0.5 3.8 Starboard 

Aft Zone 
Reference Cell 397.0 0.5 0.2 Starboard 

4 Numerical methods for solving Laplace’s equation 

4.1 Boundary element modelling and cost scalings 

Within each iteration of the FNREMUS code it is necessary to solve Laplace’s 
equation.  Laplace’s equation, which models the electric field, is expressed as 
 0)(2 =∇ yφ  (1) 
for some location y.   
     Green’s function for Laplace’s equation is: 
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The Boundary Integral form for Laplace’s equation can be expressed as: 
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where ds′ indicates that we are integrating over the surface with respect to y. 
Discretising (3) and evaluating the integrals using Gaussian quadrature, 

gives the following system of equations: 
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where, N represents the number of nodes in the problem after discretising.  In 
matrix form this gives: 
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where φ′= ∂φ /∂n′.  
     The cost of storing and evaluating (5), using an indirect solver, scales with the 
second power of the size of the problem.  A problem that doubles in size will 
therefore approximately quadruple in memory requirement and computational 
time.  This becomes prohibitively large as the size of N approaches 105. 

4.2 Fast multipole method and cost scalings 

One of the methods that has promised the most in recent years, with respect to 
reducing the operation count and storage requirements of the BEM is the fast 
multipole method.  The FMM was initially introduced by Rokhlin [6] as a fast 
solution method for the two-dimensional Laplace equation.  The FMM can be 
thought of as a method for separating the kernel of the BEM into a product of 
functions of its dependant variables, i.e. if we can write 
 )()(),( 21 yxyx ggG =  (6) 
In this case we may re-express (3), after moving the g1 term outside of the 
integral, as 
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     We see that in (7), g1 and g2 take on N different values.  The calculation of the 
integral will therefore require just order N operations, and the evaluation of g1 at 
all locations x, a further order N operations. 
     Most kernels of interest cannot be expressed directly in such a simple form as 
(7) and the FMM can be thought of as a way of achieving such a decomposition, 
by in part, expanding the kernel as an infinite series.  Expanding the function 
F(x,y), around a reference point, z, using a Taylor series expansion gives: 

 ( )
0

1( , ) ( ) ( , )
!

F Fβ

β β

∞

=

= − ⋅∇∑x y z y x z  (8) 

which, for simplicity, can be expressed as a truncated series of products of 
functions that depend on x, y and z: 
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Expressing Green’s function in the form of (9) and substituting into (3) gives  
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     As with many series expansions, the rate of convergence is of utmost 
importance.  Such expansions converge efficiently only for small ranges of the 
dependant variables.  Indeed for the Taylor series expansion, and hence (10), to 
converge, the condition that |z-y |< |x-z |  must be satisfied.  As such, it is not 
possible to evaluate (10), for all locations x and y, by choosing a single value of 
z.   
     To overcome this limitation, we introduce a hierarchical decomposition of the 
spatial domain to carry out grouping of nodes.  This is achieved by decomposing 
the domain into a finite number of groups, ∂Ωl, each containing a centre point zl, 
such that (10) can be expressed as  
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     Evaluation of (11) can be performed for nearly every x and y location.  This is 
achieved by only allowing collocation nodes, x, to interact with relatively distant 
groups of integration nodes, y, with centre zl.  The FMM goes on to decrease the 
computational cost by performing additional expansions.  For example, the 
functions g1 and g2, which, like (9) depend on two vectors, can also be expressed 
as Taylor series expansions.  By doing so, the number of direct interactions 
between nodes is decreased.  This is illustrated in Figure 2 for the BEM and 
FMM.   

 

  

Figure 2: Diagram showing the interaction of nodes in the BEM (left) and 
FMM (right).  Hubs are established in the FMM to reduce the 
number of nodal links and hence the computational cost.  

     While performing additional expansions produces a complex grouping 
structure, doing so will result in the computational and storage cost of the FMM 
to scale approximately with the size of the problem, N.  Clearly, the reduction in 
cost, will allow larger problems to be solved faster.  Indeed, even for the 
modestly sized surface ship mesh, described in Section 2, it would be expected 

 © 2007 WIT PressWIT Transactions on Engineering Sciences, Vol 54,
 www.witpress.com, ISSN 1743-3533 (on-line) 

230  Simulation of Electrochemical Processes II



 
 

that significant savings in CPU time would be achieved using the FMM.  This 
offers the time-constrained user the ability to perform more detailed sensitivity 
studies than would otherwise be possible.  Additionally, the CPU-time required 
to solve a problem can be further decreased by reducing the number of expansion 
terms, p, used.  This is likely to cause a slight reduction in the accuracy of the 
overall solution since the relevant function in (9) will be approximated using 
fewer terms.  However, this is a useful tool in the initial stages of sensitivity 
analyses and allows the user the chance to perform preliminary studies in 
relatively quick time before performing more accurate and detailed analyses. 

5 Results 

In this section computational results using two Laplace solvers within 
FNREMUS will be studied.  These are: 

• BEASY-Thermal, a commercial boundary element solver; and 
• the FMM code as described in Section 4. 
These will henceforth be referred to as FNREMUS-BEASY and 

FNREMUS-FMM, respectively.  Experimental results, obtained using physical 
scale modelling (PSM), will also be used to validate the computational results.  
Results calculated using both PSM and FNREMUS-BEASY were calculated as 
part of the paper by DeGiorgi et al [1].   
     In order to compare its performance and accuracy, the results calculated using 
FNREMUS-FMM were obtained using different numbers of expansion terms.  
While increasing the number of terms in the Taylor series expansion will 
generally increase the accuracy of the solution, the benefits of doing so must be 
offset against the additional computational cost of calculating the extra 
expansion terms.  
     Key results obtained using PSM and computational methods are shown in 
Table 2.  As discussed by DeGiorgi et al [1] variations can be seen as indications 
of the non-uniqueness of the multiple anode-multiple cathode-variable input 
current problem.  This issue is not discussed here since the objective of this work 
is the comparison of solver performance.  Of importance here is the comparison 
between the two calculated results. In both FNREMUS solvers, the current from 
the anodes will equal the sum of the current from the propellers and docking 
block.  It can be seen from FNREMUS-BEASY results that the total anodic and 
cathodic currents are equal to 1.973mA.  While the total anodic current shows 
good agreement with the PSM results, the individual (fore and aft) currents show 
differences.  This is the same pattern as seen in [1].  The FNREMUS-FMM 
results in Table 2 show that there is a total anodic and cathodic current of 
between 2.011mA and 2.009mA depending on the number of expansion terms 
used.  The difference between FNREMUS-FMM and PSM anode currents is 
greater than the differences calculated for FNREMUS-BEASY and PSM.  
However, there is a smaller difference between the total cathodic currents for 
FNREMUS-FMM and PSM.  Indeed, the FNREMUS-FMM values of 
anodic/cathodic currents are closer to the average of the PSM anodic/cathodic 
currents than FNREMUS-BEASY.  As with the FNREMUS-BEASY case, the 
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fore and aft currents show differences between PSM and FNREMUS-FMM.  
This could again be attributed to multiple combinations of zonal input values that 
result in similar overall system performance parameters. 

Table 2:  Corrosion results from ship hull calculated using Physical Scale 
Modelling (PSM), FNREMUS-BEASY and FNREMUS-FMM. 

FNREMUS-FMM  
 

PSM FNREMUS-
BEASY p=2 p=3 p=4 p=5 

Fore anodes (mA) -1.21 -0.161 -0.143 -0.183 -0.182 -0.204 

Aft anodes (mA) -0.76 -1.812 -1.868 -1.828 -1.828 -1.805 

Total -1.97 -1.973 -2.011 -2.011 -2.010 -2.009 

Docking blocks (mA) 0.89 0.889 0.915 0.915 0.914 0.913 

Propeller (mA) 1.15 1.084 1.097 1.096 1.096 1.096 

Total 2.04 1.973 2.011 2.011 2.010 2.009 

Forward reference 
electrode (mV) -850 -851 -851 -851 -851 -851 

Aft reference 
electrode (mV) -850 -850 -849 -849 -849 -849 

 
     Figure 3 shows the CPU times required to run the model using FNREMUS-
BEASY and FNREMUS-FMM with increasing expansion terms.  The total CPU 
time taken to run FNREMUS-BEASY is approximately 24,000 seconds.  This is 
at least twice as long at it takes to run FNREMUS-FMM for any of the cases 
shown.  The time taken to solve the problem using FNREMUS-FMM with two 
expansion terms is approximately 3,000 seconds or eight times quicker than 
FNREMUS-BEASY.  As larger problems are solved, the difference in time taken 
to solve them using both FNREMUS solvers will be exacerbated due to the cost 
scalings of each method. 
     It can be seen that the currents in Table 2 don’t appear to converge towards a 
single value as the number of expansion terms increases.  This is most likely a 
result of the FNREMUS ICCP algorithm which employs an iterative solution 
technique around the non-linear material polarisation relationship.  The currents 
shown in Table 2 are the first iterative values within the specified tolerance. 

6 Summary 

In this work the fast multipole method has been successfully applied to the 
computational modelling of electrochemical corrosion on a surface ship.  The 
ship chosen is one similar to US Navy ships with a system similar to that which 
can be found on these ships.  The problem chosen is representative of the type of 
design problem which may be encountered and does have a basis in reality.  Cost 
savings estimated in this work would therefore translate to real cost savings.    
The CPU-time required to solve this problem was more than eight times faster 
than a commercial boundary element when solved using two expansion terms 
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and twice as fast when using five terms.  Furthermore, the results obtained using 
the FMM corrosion solver demonstrate the same type of agreement and variation 
with PSM as shown earlier with conventional BEM solvers [1].  This indicates 
that there are no additional errors introduced into the modelling process by the 
use of the fast multipole method.   
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Figure 3: CPU time required to run FNREMUS using different Laplace 

solvers on a Frigate model with ICCP system. FNREMUS-BEASY 
was only run once but has been shown here for comparison with 
FNREMUS-FMM. 

     Based on the comparison of runtimes generated by analysis of a realistic ship 
problem, it has been determined that incorporation of the fast multipole method 
into BE code would greatly enhance the ability to use BEM for large problem 
solutions.  This could readily lead to more use by those interested in the solution 
of electric fields on- and off-board of large complex structures such as modern 
military ships. 
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