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Abstract

This paper presents a hybrid two dimensional Dual Reciprocity Boundary Element
Method (DRBEM) for modelling the primary reactions of iron corrosion in an
acidic solution. The main focus is on the establishment of the DRBEM approach
for this kind of problems in which the mathematical formulation is based on the
Planck-Nerst law, the conservation of charge and the conservation of mass for the
species participating in the process. The model is capable to describe the transport
process of Fe+2 and H+ ions in the aqueous electrolyte driven by the instantaneous
electric field that results from the existent charge distribution. The results of this
work compare qualitatively well with previously established references.

1 Introduction

Numerical modelling of corrosion cells is necessary in order to understand the
basic principles involved in the process. Even the simplest system with primary
chemical reactions can represent a challenging problem from both the theoretical
and numerical points of view. The high complexity of the phenomenon is mainly
due to the non-linear coupling between the transport and electric field equations in
the electrolyte, and more specifically in the region close to the anodic and cathodic
nests. The understanding of the basic principles may lead to novel techniques for
corrosion control, and may help to avoid expensive experimental setups.

The goal of this work is to establish a Dual Reciprocity Boundary Element
Method (DRBEM) for solving iron corrosion problems in which the anodic and
cathodic surfaces are well identified in advance. The conceptual model discussed
in this work is sketched in Fig. 1.

In particular, this paper focuses in the primary reactions occurring in the
anode and cathode, and defers the secondary reactions (i.e. rust formation) for
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Figure 1: Conceptual model of the corrosion model to solve.

other models. The participating species are Iron ion (Fe+2), Hydrogen ion (H+)
and a general ion A− coming from an additional dissolved acid. The problem
consists in solving the time dependent transport equation for Fe+2, H+ and
A−, in the aqueous acidic electrolyte, coupled with the electric field equations
due to the instant ionic distribution. The computational approach is the Dual
Reciprocity Boundary Element Method (DRBEM). Numerical modelling with
Boundary Element Methods (BEM) [1, 2] is very attractive in the sense that
it avoids domain discretisation and at the same time it uses the fundamental
solution of the leading differential operator in the equation to solve. In addition,
BEM applied to the time dependent advection-diffusion equation (A-DE) has been
widely developed in the last decades and a large variety of efficient formulations
were established [3, 4]. Usually, the DRBEM yields a system of equations whose
condition number grows with a certain power law of the number of degrees of
freedom [5], thus imposing an upper practical limit to the size of the model to
solve, this problem for DRBEM has not been completely sorted out so far, and the
practical limitations of this formulation need to be explored in more detail.

2 Governing equations

The mathematical model is based on the work done by V. Botte et al [6], where a
one-dimensional finite difference approach is employed to solve the iron corrosion
problem in acidic aqueous solution. This section summarises the main theoretical
aspects developed in the cited reference. By assuming low solute concentration and
neglecting gravitational type convective motions in the electrolyte, the isothermal
mass flux Jk of species k in a non-dense aqueous electrolyte can be described by
the Planck-Nernst law [7] according to:

Jk = −Dk∇ck − zkF

R0T
ck∇ϕ (1)

where Dk, ck and zk are the diffusion coefficient, the concentration, and the charge
number of k-th species in the aqueous solution, F ∼ 96500 sA mol−1 is the
Faraday constant, R0 ∼ 8.314 JK−1mol−1 the universal gas constant, T is the
temperature of the system and ϕ is the electric potential.
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The mass conservation equation can be expressed as:

∂ck

∂t
+ ∇ · Jk = ρk (2)

where t is time and ρk is a source term which represents the creation/annihilation
of species k due to secondary chemical reactions (i.e. rust production). The mass
conservation equation leads to the time dependent A-DE with reaction term, see
ref. [6], which describes the transport of species k in the electrolyte:

∂ck

∂t
+ ∇ ·

[
−
(

zkFDk

R0T
∇ϕ

)
ck

]
− Dk∇2ck = ρk. (3)

The instantaneous charge conservation equation which implies: ∇·(∑ zkJk) = 0,
leads to

∇ ·
[(∑

k

zkFDk

R0T
ck

)
∇ϕ

]
= −

∑
k

Dk∇2ck (4)

The boundary conditions for the electric problem are imposed by means of the
dominant anode and cathode reactions: Fe → Fe+2+2e− and 2H++2e− → H2,
respectively. Then the normal current in the anode can be modelled by means of a
simplified Butler-Volmer equation with transfer coefficient equal to 1/2:

iA = 2i0 sinh
[
zFe+2F

R0T
ηA

]
(5)

where iA is the current density of the anode (used as boundary condition for the
electrical problem), i0 is obtained experimentally, and

ηA = δϕA − EA (6)

is the anode over-voltage, where δϕ is the difference of electric potential between
the anode and the adjacent electrolyte film, and EA is the electrode potential at
zero current, computed as:

EA = E0 +
R0T

zFe+2
ln [cFe+2 ] (7)

Once the current density at the anode is found in terms of the over-voltage and iron
ion concentration, the mass flux given by eq. (2) can be obtained, thus yielding the
necessary boundary conditions for the transport problem.

When an acid is added to the solution, it dissociates according to HA →
H+ + A−, thus reducing the pH in the electrolyte [6]. Then, cA− = cFe+2 + cH+ .
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3 Dual Reciprocity Boundary Element Method

The governing equations for the electric potential and the solute transport for each
species can all be casted into Poisson-like equations of the form:

∇2ck(x, t) = b(x, t) x ∈ Ω, (8)

defined in the integration domain Ω with boundary Γ = ∂Ω, where the right hand
side (RHS) term b(x, t) can be regarded as a generic source term to be defined

this equation into an algebraic system of linear equations which require boundary
only discretisation. Following the well established boundary integral approach, the
weighted boundary integral expression of eq. (8) with function G yields [2]:

µick(xi) +
∫

Γ

(
∂G(xi, x)

∂n̂
ck(x) − G(xi, x)

∂ck(x)
∂n̂

)
dΓ =

∫
Ω

G(xi, x)b(x, t)dΩ, (9)

where µi = 1/2 for smooth boundaries, and the weight function G is the
fundamental solution of Laplace equation in 2D: ∇2G(xi, xj) + δ(xi, xj) = 0.
The domain integral appearing in the RHS of eq. (9) is treated with the Dual
Reciprocity Method (DRM) [8]. In this work we have employed a set of Nr radial
basis functions (RBF) fi(xj) =

{
1, r2

ij ln(rij), xj , yj

}
known as Augmented Thin

Plate Splines (ATPS) in order to approximate b as:

b(x, t) ≈
Nr∑
i=1

ai(t)fi(x), (10)

where rij is the distance between the source and field points denoted by indices
i and j, respectively, and aj(t) are the interpolating coefficients to be adjusted in
order to minimise the error between b and its approximation. The DRM is based
on the fact that the RBFs can be considered as source terms of potential functions
û defined by: ∇2ûj(xi) = fij . Henceforth, the RHS of eq. (9) can be integrated
by parts in order to obtain a boundary-only integral equation of the form:

µick +
∫

Γ

(
∂G

∂n̂
ck − G

∂ck

∂n̂

)
dΓ =

Nr∑
j=1

aj

[
µξû +

∫
Γ

(
∂G

∂n̂
û − G

∂û

∂n̂

)
dΓ

(11)
Details of this approach can be found in refs. [5, 8]. In the standard BEM matrix
notation, eq. (11) can be expressed as:

(H {ck} − G ∂n{ck}) =
(
HÛ − G Q̂}

)
{a} , (12)

where H , G, Û and Q̂ are the usual DRBEM collocation matrices [9, 8, 2],
{ck} = ck(xi, t) is a 1-column array of ck evaluated at the collocation nodes, and
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.



the coefficients {a} = aj can be determined inverting the linear eq. (10) provided
that {bi} is known at the collocation nodes:

{a} = F −1{b}. (13)

Then, eq. (12) becomes: H ck − G ∂nck = Sb, where S :=
(
HÛ− GQ̂

)
F−1,

S ∈ RM×M , and F = fij ,∈ R(M+3)×(M+3) is the 2D ATPS RBFF matrix. Then,
Û = ûij ,∈ RM×(M+3) and Q̂ = ∂ûij/∂n̂i ∈ RN×(M+3) are the usual DRM
matrices. N is the number of freedom nodes used to discretise Γ, M = N + L,
and L is the number of DRM nodes in Ω. Next, we express the 1-column array {b}
representing the RHS term evaluated at the collocation nodes in a way that results
suitable for the DRM treatment. The time dependent term is approximated as:

∂ck

∂t
≈ cm+1

k − cm
k

δt
; cm

k = θck(t + δt) + (1 − θ) ck(t) (14)

where index m represents the time level and θ can be adjusted between 0 and
1 in order to tune the time integration scheme between fully explicit (θ = 0)
and implicit (θ = 1). The convective term is split into the following two terms:
∇ · (V ck) = (V · ∇) ck + (∇ · V ) ck. The first one on the RHS represents
advection in incompressible media, i.e. ∇ · V = 0, while the second one can
be regarded as a first order reaction term, provided that ∇ ·V is known in advance.

4 Computational implementation

This section outlines the computational implementation of the simple iron
corrosion process in a two dimensional cell. The problem is solved with an iterative
two-stage sequential approach. The time integration scheme involves a finite
difference approach with two time levels. First, the electric field is computed with
the most updated values of species concentration, second the transport problem for
each species is solved. Then, a new time level can be solved once the electric and
transport problems are consistent with each other at present time level.

The integration domain is discretised with a mixed unstructured mesh, where
some regions may be decomposed into many sub-domains and some others may
be discretised only in their boundary. The former is known as multi-domain region
while the latter is identified with single domain region. The assembly of multi and
single-domain regions into the same problem provides a suitable pre-processing
flexibility which allows the treatment of complicated geometries. In this work, the
characteristic size of a cell in the multi-domain approach is ∼ 0.01m.

4.1 Electric problem

The electric problem at time level m can be expressed as:

∇2ϕm = belec. (15)
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The source term is expressed in terms of the concentrations found in the last time
level according to:

belec = −
∑

k Dk∇2cm−1
k∑

k αkcm−1
k

. (16)

For simplicity, the DRBEM is implemented throughout a multi-domain approach
in which instant diffusion coefficients can be regarded as piecewise constant
isotropic and homogeneous in each sub-domain. After applying collocation
DRBEM, the discrete version of the electric problem becomes:

H{ϕ} + G{q} = S{belec} (17)

The denominator in eq. (16) represents an apparently instant diffusion coefficient
De for the electric problem, and q = −De∇ϕ · n̂ can be regarded as a current
density, to be conserved throughout the interface between two sub-domains.

4.2 Transport problem

The second stage solves the transport problem for each chemical species involved.
The transport problem can be formulated by casting the transport equation eq. (3)
into a Poisson-like equation as follows:

∇2ck(x, t) = btran (18)

where the source term btran given by:

btran =
1

Dk

[
∂ck

∂t
− ∇ · (V ck) − ρk

]
, (19)

and the apparent convective velocity is defined as: V = zkFDk

R0T E, where E = ∇ϕ
is the electric field in the electrolyte. After applying the collocation DRBEM
technique, the integral matrix equation per sub-domain becomes:

H{ck} − G{∂nck} =
S

Df

[
∂

∂t
+

2∑
p=1

(Vp · Tp) + ∇ · V
]
{ck}, (20)

where the following matrices were employed [5, 9]: Vp = diag {vp} and Tp =
∇pF · F−1; where V ∈ RM×M×3 and T ∈ RM×M×3, see ref. [9] for details. By
applying same procedure as in [9] a close linear system of equations of the form

ATRANx = B (21)

can be obtained, in which the solution represents fluxes and potentials at the
boundary of the integration domain.
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4.3 Coupling strategy

The coupling strategy in each time level can then be summarised as follows:
1. Define initial conditions for ck obtained from the previous time level
2. Compute belec with the most updated ck field
3. Update boundary conditions with Butler-Volmer equation (5)
4. Solve electric problem given by eq. (15)
5. Use the electric field in order to compute effective velocity V
6. Compute btran with the most updated ϕ and E
7. Solve A-DE system given by eq. (21) for each species
8. If ck is consistent with ϕ stop, otherwise repeat step 2

The consistency is checked if the relative error of ck between two subsequent
iterations L and L−1 is smaller than a small arbitrary factor, i.e.

∑ |cL
k −c

(L−1)
k | <

εcL
k , and ε ∼ 0.1.

5 Results

This section presents the numerical results obtained for two cases: in the first one,
the cathode and anode are separated by a homogeneous column of electrolyte. In
this example, symmetrical lateral boundary conditions, have been imposed in order
to retrieve one-dimensional results. This is done in order to compare results with
the work of Botte et al. [6].

The second example, has non-symmetrical conditions and describes qualita-
tively the behaviour of a 2D corrosion cell with two adjacent electrodes.

5.1 One-dimensional example

This example consists of a rectangular domain of 0.1m × 0.025m, with its larger
dimension oriented in x direction. The anode is placed on the left boundary (x = 0)
while the cathode is on the right (x = 0.1m) as shown in Figure 2.

������������������

������������������

H2+2Fe

2e−2e− 2H+

Anode
Electrolyte

(x,y)=( 0.1 , 0.025 )m

Cathode

(x,y)=(0,0) J.n = 0

J.n = 0

Figure 2: Conceptual model of the corrosion cell in example 1.

Impermeable conditions, i.e. J · n̂ = 0, were imposed on both top and bottom
boundaries. The simulation parameters are summarised in table 1. Figure 3 shows
the concentration profiles of Fe+2 and H+ ions in the electrolyte at different
time levels. The concentration of Fe+2 near the anode increases with time and
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Table 1: Simulation parameters.

Description Symbol Value

Concentration of Fe+2 at t = 0 cFe+2(x, t = 0) 1 × 10−14 mol/m3

Concentration of H+ at t = 0 cH+(x, t = 0) 1 × 10−3 mol/m3

Time step δt 2 × 101 s

Exchange anode current density i0 1 × 101 A/m2

Anode reaction potential E0 1.44 V

Diffusion coefficient Fe+2 DFe+2 5 × 10−6 m2/s

Diffusion coefficient H+ DH+ 1 × 10−6 m2/s

Temperature T 300 K

propagates towards the bulk of the solution as time passes by. On the other hand,
the concentration of H+ decreases with time and the maximum of its distribution
moves towards the cathode at a very slow rate, where it is consumed in the cathode.
The slow motion of the distribution of H+ towards the cathode seems to be driven
by the instant electric field. Figure 4 shows the concentration profiles of species
A− at different time levels. Figure 4 (right) shows the electric potential profile
along the electrolyte at different times 3h, 6h, 9h 12h and 15h. it can be observed
that the solution in the bulk of the electrolyte is quite close to the solution of the
Laplacian equation, i.e. the gradient of concentration does not play a significant
role in the electric problem far from the electrodes.
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Figure 3: Concentration profiles of Fe+2 (cFe+2 - left axis) and H+ (cH+ ) in
10−3mol/m3 at times 3h, 6h, 9h 12h and 15h. The arrows indicate the
time direction.

 © 2007 WIT PressWIT Transactions on Engineering Sciences, Vol 54,
 www.witpress.com, ISSN 1743-3533 (on-line) 

30  Simulation of Electrochemical Processes II



 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0  0.02  0.04  0.06  0.08  0.1

c A
-  [

10
-3

 m
ol

/m
3 ]

x [m]

A-

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0  0.02  0.04  0.06  0.08  0.1

U
 [V

ol
t]

x [m]

Figure 4: Concentration profiles of A− ion (cA−) (left), and electric potential
profiles (right) at times 3h, 6h, 9h 12h and 15h. The arrows indicate
positive time direction.

5.2 Two dimensional example

The integration domain in this example is shown in Figure 5(a). It consists of a
sample of 10cm×5cm. The initial conditions were assumed in the same way as in
the previous example. The boundary conditions for the anode were given according
to the Butler-Volmer equation eq. (5) and the over-voltage was updated at each
time step. The cathodic current density was the same as the anodic, in view of the
global charge conservation equation. This can be done because all other boundary
conditions apart from the anodic and cathodic surfaces have assigned zero normal
current. Fig. 5(a) shows the concentration distribution of Fe+2 at time t = 1h.
Fig. 5(b) shows the corresponding electric potential, the numbers associated with
the iso-lines represent concentration in [mol/m3]. The numbers inside the figure
indicate potential in [V].

(a) (b)

Figure 5: (a) Concentration of Fe+2, and (b) electric potential at time t = 1 h.
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6 Conclusions

An iterative approach based on the multi-domain DRBEM for solving an iron
corrosion model in acidic aquous electrolyte has been established and successfully
implemented for two-dimensional problems.

The results obtained compare qualitatively well with previous publications [6],
although more study is required in order to represent properly the thin layer of
electrolyte close to the electrodes.

Further extensions of this work will involve the solution of the secondary
reactions that yield rust and the study of the influence of external electric fields.
This is in order to assess the impact of environmental electric pollution on simple
corrosion cells.
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