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Abstract 

In this paper, we aim to analyze the productive performance of plots cultivated by 
family farmers. We use an alternative Data Envelopment Analysis (DEA) 
approach to calculate the relative efficiency of such plots. Notwithstanding, 
DEA’s basic assumption includes the homogeneity of the production units under 
analysis. Herein, as the chemical composition of the soil varies considerably 
among plots, directly influencing their fertility, and, thus, their productivity levels, 
the plots shall be grouped into homogeneous clusters first. For that, we use Self-
Organizing Maps, based on their comparative advantages to other methods. Then, 
the relative efficiencies of plots within each cluster will be assessed using separate 
DEA models. Nonetheless, a direct comparison among the scores of plots from 
different clusters is not feasible, because the relative efficiency of a production 
unit can solely be compared to those inserted in the same set of analysis. Hence, 
to overcome such inconvenience, we further apply a technique that allows 
compensating for the non-homogeneity of plots. The results indicate that, when 
countervailing the effects of the chemical composition of the soil, the plots with 
favorable conditions do not necessarily present better productive outcomes. 
Keywords: sustainable development, data envelopment analysis, efficiency 
analysis, peri-urban spaces, self-organizing maps. 
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1 Introduction 

Since 2006, the Family Agriculture Project in Strip of Ducts (or PAF Ducts – the 
acronym in Portuguese) is an agricultural occupation strategy for the peri-urban 
areas that overly Petrobras refinery pipelines. The area, located in the municipality 
of Nova Iguaçu, Rio de Janeiro, Brazil, was divided in plots of 1,000 m² each. 
Each one assigned to a particular family. 
     The activity developed meets some ecological concerns and focuses primarily 
at the cultivation of fruits, tubers and vegetables. The farmers cultivate about 50% 
of the total area of each plot, while the other part is alternately intended for fallow. 
The average labor force employed is two workers per year. All plots make use of 
electrical energy and have a catchment basin for manual irrigation. Besides, 
technical assistance and inputs are offered at equitable basis. 
     The objective of this study is to evaluate the productive performance of such 
plots, in accordance to some criteria, which aim at great stability (i.e. less seasonal 
variation) in production, large variety of items produced and high volume of 
products offered for sale. For that, we use an alternative approach that combines 
Data Envelopment Analysis (DEA [1]), Self-Organizing Maps (SOMs [2]) and a 
compensating algorithm proposed by [3]. 
     The option for DEA was grounded on its ability of dealing with 
multidimensional problems and various units of measurement. Nevertheless, DEA 
models assume the homogeneity of the production units under analysis (the plots). 
However, in a preliminary analysis, it was identified that the chemical composition 
of the soil varies notably among the plots, influencing their fertility, and, thus, 
their productive levels. Therefore, the plots needed to be grouped in homogeneous 
clusters firstly. For such purpose, we use SOMs based on their comparative 
advantage to other clustering methods [4]. Next, the relative efficiencies of the 
plots within each cluster will be calculated using separate DEA models. 
     Due to the disjointedness of the clusters formed, a direct comparison among 
plots from different clusters is not feasible, once the relative efficiency of a 
production unit can solely be compared to those units inserted in the same set of 
analysis. To surpass such inconvenience, we will further apply the algorithm of 
[3] to compensate for the non-homogeneity of the plots. 
     Section 2 brings a review of DEA´s use in agricultural activities. In section 3, 
we present the methodology used herein. Section 4 describes the application to the 
problem under analysis. In section 5, we present the results derived. Section 6 
discusses the results in terms of the chemical composition of the soil. Finally, in 
section 7, we present some conclusions and a few suggestions for future work. 

2 DEA’s application in agriculture 

Since the early 1990s, DEA has become widely used in the evaluation of relative 
efficiency in different areas [5]. The agricultural activity represents a field where 
the application of DEA models is quite fruitful. Classic DEA models [1, 6] were 
used to analyse the relative efficiency of energy consumption in the agriculture by 
[7]. In [8], the production relative efficiencies and productivity changes of 
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agricultural cooperatives were measured using DEA and the Malmquist index. In 
[9], the beef cattle production was examined using a unitary input DEA model 
combined to relative efficiency measures generated by the inverted DEA frontier. 
In [3], DEA models were used to compare the performance of farms cultivated 
with different technologies, and an algorithm for calculating the relative efficiency 
scores taking into account such non-homogeneity was proposed. In [10], the 
performance of producers were analysed, using SOMs and cross-evaluation DEA 
models. In [11], a unitary input model was used for the evaluation of intercropping. 
     Here, as [9, 11], we apply a unitary input DEA model, but unlikely we use 
SOMs to cluster the production units and allow the homogeneity in the subset to 
be evaluated by each DEA model. In this sense, our proposal differs from [10], 
which used the DEA cross-efficiencies as inputs to the SOMs procedure for ex-
post clustering. Additionally, we apply the algorithm developed in [3] to enable 
the direct comparison of plots from different clusters. 

3 Methodology 

The methodology applied herein comprises three sequential steps. First, we use 
SOMs [2] to segregate the plots and assure their homogeneity in terms of the 
chemical properties of the soil. Second, we use a separate DEA model for each 
cluster, and evaluate the relative efficiency of each plot within the cluster. Finally, 
we use an algorithm [3] to countervail for non-homogeneity among plots. 

3.1 Self-organizing maps: fundamental aspects 

Although there exist several methods that evaluate the similarity between a set of 
units to create homogeneous subsets (clusters), we opted for SOMs. In the 
literature, we find some works [10, 12] that discuss the combined use of SOMs 
and DEA models. 
     SOMs represent a type of neural network, i.e. computer models of artificial 
intelligence that incorporate certain capabilities of the human brain, where sensory 
inputs are represented by topologically organized maps [12]. Particularly, SOMs 
emulate the unsupervised learning by considering neuron neighborhood, whose 
structures are arranged in grid. The most used topology is the interconnected two-
dimensional one, where the neurons are represented by rectangular, hexagonal or 
random grid knots of neighbor neurons [12]. 
     SOMs procedure comprises three processes. In the competitive process, each 
neuron is initialized with a vector of inputs, and then the neurons compete to 
become active. The choice of the winner neuron is usually based on the Euclidean 
distance, as performed here. Next, the winner has its weights adjusted to respond 
to the stimulus (synapse), and a cooperative process between the winner and its 
topological neighbors is simulated, so that the neighbors receive adjustments as 
well. The topological neighborhood is normally defined by a Gaussian function, 
as herein. Finally, the adaptive process takes place by the adjustment of the 
synaptic weights, considering that the learning rate decreases over time to avoid 
that new information compromise the knowledge accumulated. 

Ecosystems and Sustainable Development X  135

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 192, © 2015 WIT Press



     In synthesis, SOMs yield a topological mapping, segregating the input data 
based on their similarities. Comparatively to other neural networks, SOMs present 
the advantage of transforming patterns of high-dimensionality in discrete maps, 
usually single or two-dimensional. For further insights, see e.g. [12]. 

3.2 Data envelopment analysis 

3.2.1 Basic concepts 
DEA is a non-parametric method based on mathematical programming that 
calculates the relative efficiency of a set of production units using multiple inputs 
(resources) and producing multiple outputs (products). These units are known as 
decision-making units (DMUs). In DEA, the basic premise is homogeneity of the 
DMUs. Here, as the DMUs (plots) in the set of analysis do not operate in similar 
environments (due to differences in the chemical conditions of the soil), we use an 
alternative DEA approach to overcome the lack of homogeneity. 
     Each DMU’s relative efficiency score is optimized, by comparing the resources 
used and the quantities produced to the levels of the others. The result is an 
efficient frontier. The DMUs lying on the frontier are efficient (score of 100%); 
the others are inefficient (score of less than 100%). 
     The most used DEA models are: CCR [1] and BCC [8]. The first assumes 
constant returns-to-scale, while the latter works under variable returns-to-scale, 
replacing the axiom of proportionality by convexity. These models present 
equivalent formulations (envelope and multipliers), which provide the same 
efficiency scores for each DMU, as they are dual problems. Traditionally, there 
are two possible radial orientations for such models: input orientation, which seeks 
to minimize the resources while the production levels remain fixed; and the output 
orientation, which implies the increase in quantities produced while the resource 
levels remain unchanged. 

3.2.2 Unitary input DEA model 
In this study, as every agricultural plot in the set of analysis operate with quite 
similar inputs, we use the DEA model with a unitary, constant and single input, 
wherein the input denotes the very existence of the DMU. The unitary input avoids 
the mathematical inconsistencies that arise in a model without inputs. We apply 
the approach of [13], in which the CCR and BCC models are equivalent, and use 
an output orientation. The linearized unitary input DEA model, output-oriented, in 
the envelope formulation, herein applied, is given by the following linear 
programming:  

Max ݄                                                        (1) 
s. t. ∑ ݕߣ


ୀଵ  ݄ݕ, ∀݆	                                       (2) 
∑ ߣ

ୀଵ  1                                                    (3) 
ߣ  0, ∀݇.                                                     (4) 

     In eqns. (1)–(4), ݄ denotes the inverse of the relative efficiency of the DMU 
under analysis (DMUo); ݕ is the jth output (j = 1, ..., s) of DMUk (k = 1, ..., n); 
and {ߣሽ	and is the individual contribution of each DMU in the formation of 
DMUo’s target. In fact, this model resembles a multi-criteria additive model, 
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where the alternatives (DMUs) assign weights to each criterion (outputs), ignoring 
any judgment of an eventual decision-maker.  

3.2.3 Homogenization technique 
Although the literature comprises several proposals to overcome the lack of 
homogeneity [14, 15], we follow the line of action (as in [3, 12, 16]) that applies 
handicap factors to compensate for the DMUs non-homogeneity. 
     The assumption is that, after grouping the DMUs into homogeneous clusters, 
the efficient DMUs of each cluster equally share good management practices. 
Nonetheless, these DMUs do not present scores of 100%, when compared to 
DMUs from other clusters, due to different exogenous conditions that characterize 
each particular cluster. Thus, comparisons among clusters shall be done by taking 
into account solely the efficient DMUs of each cluster. This comparison allows 
identifying the cluster that benefits from exogenous variables to compensate the 
disadvantaged clusters, giving a prior benefit to those DMUs under disadvantage. 
     Differently from [12, 16] that apply the handicap factor to the inputs and 
outputs, respectively; we follow [3] that corrects the relative efficiency measures 
directly. The algorithm herein applied obeys the following steps. 
(1) Cluster the DMUs in homogeneous groups. 
(2) Run a specific CCR model for each cluster, and select the efficient DMUs. 
(3) Run a CCR model with the efficient DMUs from step 2. 
(4) Calculate the average relative efficiencies of the DMUs from step 3, 

separated in their original clusters. 
(5) Run a CCR model with all DMUs in the set of analysis. 
(6) Use the average relative efficiencies of step 4 as a compensating factor to the 

relative efficiency measures of the disadvantaged clusters, by dividing each 
DMU’s relative efficiency score found in step 5 by the average relative 
efficiency of step 4 assigned to its original cluster. If any value obtained is 
greater than one, we need to perform the corresponding normalization. 

     The compensated relative efficiency scores are those derived in step 6. 

4 Application and results 

In the following, we apply the methodology described in section 3 to the 
evaluation of the agricultural plots of PAF Ducts. The data refer to year 2012. 

4.1 Step 1: clusters definition 

We start choosing the environmental variables to be used as input vectors in the 
SOMs procedure. Based on the chemical composition of the soil of the plots in the 
set of analysis, we selected the variables: potential of hydrogen (pH); potassium 
content (K); percentage of organic matter (OM); base saturation (BS); and boron 
content (B). Such variables are widely recognized as relevant to express the 
fertility of the soil. Table 1 exhibits the input data used to initialize the SOMs 
procedure, which come from a research conducted by the Center of Analysis of 
the Federal Rural University of Rio de Janeiro, in May 2012. 
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Table 1:  Input data used for SOMs procedure. 

Plot pH K (ppm) OM (%) BS (%) B (ppm) 
P3 7 107 26.4 90 0.12 
P6 7.4 26 19.1 100 0.25 
P7 7.6 36 18.3 100 0.21 
P9 7 43 17.4 91 0.12 
P10 7.2 29 15.9 100 0.21 
P11 7.1 31 19.1 96 0.17 
P12 7.3 31 16.6 96 0.12 
P15 7.3 60 20.0 98 0.17 
P26 7.1 95 20.9 95 0.12 

 
We used the software MATLAB®  version 7.10.0, and opted for a hexagonal 
topology to the grid, as it showed good results and represents a usual practice 
among experts. Then, we tested different grid dimensions to determine the best 
arrangement of clusters. We restricted the tests to the (2x1), (3x1) and (2x2) grids, 
to assure a minimum number of plots in each cluster for the DEA analysis. Table 
2 shows the cluster configurations, according to the grid dimensions tested. 

Table 2:  Clusters formation, according to the grid dimension tested. 

Plot 
Dimension 

(2x1) (3x1) (2x2) 
P3 2 3 4 
P6 1 1 1 
P7 1 1 1 
P9 1 2 2 
P10 1 1 1 
P11 1 2 2 
P12 1 2 2 
P15 1 2 3 
P26 2 3 4 

 
     The (2x2) grid yields four clusters, one formed by a single plot (P15). As we 
will apply a separate DEA model to each cluster, a comparison of this plot (which 
originates eight DMUs, as later explained) with others would be impaired, without 
the application of the homogenization algorithm used herein. Once this is not a 
limitation to our approach, we opted for the (2x2) grid dimension, because it better 
distinguished the lack of homogeneity among the plots (i.e. generated a larger 
number of clusters). 

4.2 DEA modeling 

To evaluate the productive performance of the plots, primary data were gathered 
on the availability of items put for sale at weekly fairs. In 2012, the production 
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activity was concentrated in the period from February to October. This occurred 
mainly due to the climate conditions in the region. 
     The dataset comprises the agricultural items offered, listed in accordance to the 
amount put for sale by item, and the average prices (in Brazilian Real – R$) 
practiced by each of the nine plots comprised in the analysis. Thereby, our unitary 
input DEA modeling was designed with two outputs: the variety of products 
available for sale (y1); and the estimated revenue based on the average price of 
products (y2). The “variety of products” is the amount of different items available 
for sale for each DMU (combination plot-month). A large variety of items denotes 
a better performance of the plot in an effort to meet the market’s needs, as well as 
a greater ability to deal with seasonality. The “estimated revenue” is the amount 
of product available for sale multiplied by the average selling price of each 
product. This value was used as the actual revenue data were not available, and it 
standardizes the production of distinct items in monetary units as well, thus 
making possible the sum of the production from different crops. 
     As the output data were collected monthly, we apply the model to the period 
from February to October 2012, and pool all observations together in the analysis, 
through a longitudinal data approach, as done in [17]. This is one of the ways to 
increase the number of DMUs [18], since we regard the same plot as a distinct 
DMU in different months. Thence, the DMUs are each plot-month combination 
(i.e. “P6-Feb” is a different DMU from “P6-Mar”). The assumption is that the 
technology and the environmental conditions remain stable over the period of time 
concerned, what seems fairly acceptable to our case study. Otherwise, we would 
need to use, e.g. the Malmquist index [19] instead. 
     In the analysis, we solely take into account the plot-month combinations with 
non-nil outputs, totalizing 68 DMUs, which are distributed among the four clusters 
defined by the SOMs procedure. As a deterministic method, DEA does not depend 
on a large number of observations for the validity of its application, unlike 
statistical approaches. In such sense, the number of DMUs in each cluster (varying 
from 25 to 8) meets the minimum advised by [20]. 
 

4.2.1 Step 2: evaluation of DMUs within each cluster 
The linear program used to compute the relative efficiency of each DMU through 
our proposed unitary input DEA-CCR model is obtained by replacing the values 
of the outputs above defined in the general formulation of subsection 3.2.2, eqns. 
(1)–(4), provided that a separate model is run for each one of the four clusters 
previously defined. 
     For that, we applied the software SIAD [21] version 3.0 (available at 
http://www.uff.br/decisao/Siadv3.zip), and calculated the relative efficiency 
scores of each DMU, in relation to the others belonging to the same cluster. These 
results are shown in table 3. We may observe that, in the whole set of analysis, 
seven DMUs were 100% efficient within their own cluster (two in C1, two in C2, 
two in C3, and one in C4, as marked in grey). Notably, five out of the seven cluster-
efficient DMUs refer to plots operating in August. 
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Table 3:  Relative efficiency scores for each DMU in relation to the others in the 
same cluster. 

C1 C2 C3 C4 
DMU Eff DMU Eff DMU Eff DMU Eff 

P6-Feb 13.3% P11-Feb 15.4% P15-Feb 30.9% P3-Feb 42.3% 
P7-Feb 46.7% P12-Feb 15.4% P15-Mar 42.5% P3-Mar 73.1% 
P6-Mar 56.7% P9-Mar 30.8% P15-May 100.0% P3-Apr 80.8% 
P7-Mar 76.7% P11-Mar 65.4% P15-Jun 44.8% P3-May 73.1% 
P6-Apr 33.3% P12-Mar 34.6% P15-Jul 100.0% P3-Jun 61.5% 
P7-Apr 63.3% P9-Apr 23.1% P15-Aug 70.8% P3-Jul 76.9% 
P10-Apr 53.3% P11-Apr 51.3% P15-Sep 74.6% P3-Aug 100.0% 
P6-May 93.3% P9-May 69.2% P15-Oct 45.2% P3-Sep 65.4% 
P7-May 73.3% P11-May 88.5% 

  

P26-Sep 7.7% 
P10-May 56.7% P12-May 53.8% P3-Oct 88.5% 
P6-Jun 73.3% P9-Jun 65.4% 

  

P7-Jun 70.0% P11-Jun 57.7% 
P10-Jun 36.7% P12-Jun 34.6% 
P6-Jul 93.3% P9-Jul 84.6% 
P7-Jul 90.0% P11-Jul 88.5% 

P10-Jul 36.7% P12-Jul 69.2% 
P6-Aug 100.0% P9-Aug 100.0% 
P7-Aug 100.0% P11-Aug 98.8% 

P10-Aug 43.3% P12-Aug 100.0% 
P6-Sep 83.6% P9-Sep 53.8% 
P7-Sep 84.2% P11-Sep 67.5% 

P10-Sep 26.7% P12-Sep 61.5% 
P6-Oct 80.1% P9-Oct 61.5% 
P7-Oct 76.7% P11-Oct 50.0% 

P10-Oct 40.7% P12-Oct 50.0% 
 

4.2.2 Steps 3 and 4: cluster of efficient DMUs 
Next, we separate the 100% efficient DMUs of each cluster in a cluster of efficient 
units, and apply the same unitary input DEA-CCR model previously used to these 
seven DMUs (step 3). From the scores obtained, we calculate the average scores 
of the DMUs in the cluster of efficient units, taking into account the other efficient 
units from their original clusters (step 4). These results are shown in table 4. 
     The fact that only the DMUs from cluster C1 got a score of 100% in the cluster 
of efficient units suggests this is the only cluster operating in optimal 
environmental condition, while the others show soil disadvantages that negatively 
affect their productive outcomes, despite any other managerial inefficiencies. 
DMUs “P6-Aug” and “P7-Aug” were deemed as 100% efficient because they 
individually exhibit the best ratio at each one of the partial productivity measures, 
i.e. the largest revenue and the widest variety of items produced, respectively. This 
is a well-known and widely reported feature of DEA models [22]. 
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Table 4:  Relative efficiency scores for the DMUs in the cluster of efficient units 
and the average scores by the original cluster. 

Original cluster DMU 
Score in 

this cluster 
Average by 

original cluster 

C1 
P6-Aug 100.0% 

100.0% 
P7-Aug 100.0% 

C2 
P9-Aug 86.7% 

80.6% 
P12-Aug 74.5% 

C3 
P15-May 60.0% 

56.7% 
P15-Jul 53.3% 

C4 P3-Aug 87.5% 87.5% 

4.2.3 Steps 5 and 6: overall evaluation of DMUs by countervailing the lack 
of homogeneity among clusters 

In the following, we apply the same unitary input DEA model to all the DMUs 
comprised in set of analysis (step 5), and refer to this as the “all-units” model. 
Then, starting step 6, we use the reciprocal of each average relative efficiency 
score from step 4 (cluster of efficient units) as a compensating factor for each 
disadvantaged cluster (C2, C3 and C4). For that, we multiply the compensating 
factor assigned to each cluster by the relative efficiency scores found to each DMU 
in step 5 (all-units model) taking into account its corresponding original cluster. 
     As the compensating procedure resulted in two relative efficiency scores 
greater than one, we had to perform the corresponding normalization, dividing the 
scores so far obtained by their maximum value. Therefore, all DMUs in cluster C1 
had their relative efficiency scores reduced in relation to those calculated using the 
all-units model, while the relative efficiency scores of the DMUs from the other 
clusters have all increased. 
     Table 6 displays the DMU’s relative efficiency scores calculated using the all-
units model, as well as their compensated (after the normalization) scores. After 
the compensation and subsequent normalization, “P9-Aug” was the single 100% 
efficient DMU, which was originally allocated to cluster C2, where it was  
100% efficient as well (see table 3). 
     From the results in table 6, we may deduce that the plots P10 and P26 were 
those that faced the worst managerial practices. The data analyzed suggest that 
fertilization intended to complement and elevated levels of K and OM in P10, and 
B in P26, may contribute to the increase of productive outcomes. Another relevant 
aspect is that most farmers shall make efforts to maintain good levels of production 
along the year, not solely during May, July and August. 

5 Conclusions 

This study provided an evaluation of the productive performance of family farms 
of PAF Ducts project. In the analysis, we used a unitary input DEA model 
combined to the SOMs procedure, to set homogeneous clusters, in accordance to 
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Table 5:  Relative efficiency scores calculated by the all-units DEA-CCR model, 
as well as the compensated normalized scores. 

Cluster DMU 
All-units 

model 
Compensating 

algorithm Cluster DMU 
All-units 

model
Compensating 

algorithm 
Eff Eff Eff Eff 

C4 P3-Feb 36.7% 39.0% C3 P15-Jun 26.7% 43.8% 
C1 P6-Feb 13.3% 12.4% C4 P3-Jul 66.7% 70.8% 
C1 P7-Feb 46.7% 43.4% C1 P6-Jul 93.3% 86.8% 
C2 P11-Feb 13.3% 15.4% C1 P7-Jul 90.0% 83.7% 
C2 P12-Feb 13.3% 15.4% C2 P9-Jul 73.3% 84.6% 
C3 P15-Feb 16.7% 27.4% C1 P10-Jul 36.7% 34.1% 
C4 P3-Mar 63.3% 67.3% C2 P11-Jul 76.7% 88.5% 
C1 P6-Mar 56.7% 52.7% C2 P12-Jul 60.0% 69.2% 
C1 P7-Mar 76.7% 71.3% C3 P15-Jul 53.3% 87.5% 
C2 P9-Mar 26.7% 30.8% C4 P3-Aug 87.5% 93.0% 
C2 P11-Mar 56.7% 65.4% C1 P6-Aug 100.0% 93.0% 
C2 P12-Mar 30.0% 34.6% C1 P7-Aug 100.0% 93.0% 
C3 P15-Mar 23.3% 38.3% C2 P9-Aug 86.7% 100.0% 
C4 P3-Apr 70.0% 74.4% C1 P10-Aug 43.3% 40.3% 
C1 P6-Apr 33.3% 31.0% C2 P11-Aug 74.9% 86.4% 
C1 P7-Apr 63.3% 58.9% C2 P12-Aug 74.5% 86.0% 
C2 P9-Apr 20.0% 23.1% C3 P15-Aug 40.0% 65.6% 
C1 P10-Apr 53.3% 49.6% C4 P3-Sep 56.7% 60.2% 
C2 P11-Apr 43.3% 50.0% C1 P6-Sep 83.6% 77.8% 
C4 P3-May 63.3% 67.3% C1 P7-Sep 84.2% 78.3% 
C1 P6-May 93.3% 86.8% C2 P9-Sep 46.7% 53.8% 
C1 P7-May 73.3% 68.2% C1 P10-Sep 26.7% 24.8% 
C2 P9-May 60.0% 69.2% C2 P11-Sep 56.7% 65.4% 
C1 P10-May 56.7% 52.7% C2 P12-Sep 53.3% 61.5% 
C2 P11-May 76.7% 88.5% C3 P15-Sep 20.6% 33.8% 
C2 P12-May 46.7% 53.8% C4 P26-Sep 6.7% 7.1% 
C3 P15-May 60.0% 98.5% C4 P3-Oct 76.7% 81.5% 
C4 P3-Jun 53.3% 56.7% C1 P6-Oct 80.1% 74.5% 
C1 P6-Jun 73.3% 68.2% C1 P7-Oct 76.7% 71.3% 
C1 P7-Jun 70.0% 65.1% C2 P9-Oct 53.3% 61.5% 
C2 P9-Jun 56.7% 65.4% C1 P10-Oct 40.7% 37.9% 
C1 P10-Jun 36.7% 34.1% C2 P11-Oct 43.3% 50.0% 
C2 P11-Jun 50.0% 57.7% C2 P12-Oct 43.3% 50.0% 
C2 P12-Jun 30.0% 34.6% C3 P15-Oct 26.7% 43.8% 

 
criteria related to soil fertility. Furthermore, we applied an algorithm that enables 
to compensate for the non-homogeneity of the plots. So that, a direct comparison 
among the relative efficiency scores from different clusters became possible. 
     In addition, it was found that both the relative efficiency and the maintenance 
of the soil fertility in the plot result from the interaction of several variables related 
to the chemical composition of the soil. Among the variables analyzed, it was 
found that the levels of pH, K, B, OM and BS were those that greatly contributed 
to the promotion of relative efficiency. This suggests that the proper soil 
management helps the sustainability of the agricultural activity, fomenting the 
preservation or even increasing soil fertility. 
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Table 6:  Average scores using the within-cluster model and the compensating 
(normalized) algorithm per plot, month and cluster. 

Plot 
Average scores 

Month 

Average 
scores 

Cluster
Average scores 

Within 
cluster 

Compensating 
algorithm 

Compensating 
algorithm 

Within 
cluster 

Compensating 
algorithm 

P3 63.8% 67.8% Feb 25.5% C1 64.1% 59.6% 
P6 69.7% 63.2% Mar 51.5% C2 59.6% 58.4% 
P7 75.7% 70.3% Apr 47.8% C3 63.6% 61.7% 
P9 54.3% 61.0% May 73.1% C4 66.9% 54.8% 
P10 42.0% 39.1% Jun 53.2%    
P11 64.8% 63.0% Jul 75.7% 
P12 52.4% 50.7% Aug 82.2% 
P15 63.6% 54.8% Sep 51.4% 
P26 6.7% 7.1% Oct 58.8% 

 
     Remarkably, the definition of clusters, through the SOMs, combined to the use 
of the DEA model, proved very promising. Besides, it corroborated the connection 
between the levels of the chemical elements present in the soil composition and 
related to its fertility with the relative efficiency in agricultural activity. We believe 
the methodological integration proposed herein may contribute to the 
improvement of the management of family agriculture with ecological concerns, 
as it may effectively be employed to assist small farmers in the decision-making 
process (e.g. what to plant, how many varieties, when to start etc.). 
     A possible extension for this work consists of using the so-called dynamic 
clustering [23] combined to the DEA model, replacing the (static) clustering 
method applied herein. By doing this, although indirectly, an overall comparison 
among all DMUs can be made, even in the clustered model, provided that no 
cluster is disjoint in relation to all the others. 
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