
A geometric model defined by a family of 
Splines for modelling complex systems 

Y. Villacampa, F. G. Navarro-González, P. Cerdán & M. Cortés 

Department of Applied Mathematics, University of Alicante, Spain 

Abstract 

The study of natural systems implies considering new modelling methodologies 
that are able to produce different relationships to those described with 
mathematical functions, which are derived from the geometry of Euclid. 
     In this paper, the authors propose a geometric model defined by families of 
cubic Splines, which are the basis for a definition of a numerical methodology 
for the study and modelling of complex systems.  
     Geometric models are applied in specific cases for types of relationships. One 
feature of the model is that the polynomials are not represented by their 
coefficients, because they could be highly dependent of small variations in their 
values, as it is analyzed in the article. The polynomials will be represented by 
their values at points considered in their ranges of definition, which will be 
called nodes. 
     For each variable, a Spline generated from kl cubic polynomials is defined, so 
the first objective is the analysis of a family of Splines determined by a set of 
polynomials. 
     Finally, the geometric model is determined on practical examples from 
experimental data and the advantages of using the new methodology, based on 
the identification of Splines by their values in a number of points, are discussed, 
compared with the usual definition from the polynomial coefficients. 
Keywords: modelling, complex systems, Splines. 

1 Introduction 

In the scientific literature there are different symbolic methodologies that we can 
use to obtain mathematical equations which express a relationship  iy f x  
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and are generated from experimental data of the variable ix ,  ijx  [1–7]. In 

this paper a new numerical methodology that could be applied to complex 
systems is developed, with its extension to n- dimensional variables. This 
methodology could be used together with others methodologies.  
     In the study and modelling of Complex Systems where the number of 
variables and relationship can be higher, as natural phenomena are, it is very 
important to obtain numerical methodologies that help us to modelling relations 
between variables, and to get information about the studied phenomena. 
     In the nature phenomena, that is, physical world and life, it can be possible 
that mathematical functions can’t solve all the problems because the 
mathematical functions arise from the geometry of Euclid and its geometric 
properties in the plane and space.  
     The linear models are generated in the same way, being different the methods 
in finding nonlinear models 
     Furthermore, software [1, 2], may only generate a nonlinear model in each 
execution of the program; as long as a type of mathematical equation is 
proposed, which depends of parameters, that are obtained. In the methodologies 
developed and computationally implemented in the articles [3, 5], families of 
models can be generated in each execution of the program, by performing 
transformations to be analyzed as linear models. Moreover, in [6] families of 
models according to a type of nonlinear models in their parameters have been 
generated. Related to the numerical methodologies in the articles [4, 7], a method 
using n- dimensional geometric models of finite elements has been developed, 
which it could be used in a complementary way to the methodology generated in 
this article. 

2 Polynomial regression 

Given the equation  iy f x and a set of experimental data, it is possible to 

generate a polynomial regression of degree n, in particular n=3, and then to 
obtain the best polynomial that fits the data. Likewise, a set of polynomials 

which define a cubic Spline  
1

ikl
i i l

x


   could be determined, and that best 

represent the relationship  iy f x . In these cases the method calculates 

polynomials coefficients. This process can be made using the method of least 
squares or minimizing any error function that could be defined on the set of 
feasible polynomials. If we choose to express the polynomial using their 
coefficients, in some cases, stability problems could appear in the generated 
models, because small variations on the coefficient can produce large 
fluctuations in the values of the polynomials. These fluctuations can distort the 
obtained model. To better understand the importance of generating models 
without making them dependent on the coefficients of the cubic polynomials, in 
the following figures 1 and 2, two polynomials are shown, together with other 
polynomials obtained from small perturbations in their coefficients. As can be 
observed, the changes in the values of the polynomials can be large. 
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Figure 1: First example of small perturbations in the coefficients. 

 

Figure 2: Second example of small perturbations in the coefficients. 

     For this reason, in this article the authors have studied a modification of the 
polynomial regression, identifying the polynomial not by its coefficients, but by 
its values on a finite number of points called nodes. The theoretical basis to 
generate models is to consider a geometric model defined by a family of Splines, 
identifying each of them by its value in a finite number of points 

3 Geometric model 

For each variable  ix  a Spline defined using kl cubic polynomials is 

considered. So, the first objective is to study a Spline ix  defined on  ix , with 

a set of polynomials,  
1

ikl
i i l

x


  . 

Ecosystems and Sustainable Development IX  33

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 175, © 2013 WIT Press



     Considering the variable x, the model is defined by y x , so  
1

ikl
i l

x


  . 

The cubic polynomials aren’t represented by their coefficients but by their values 

on the points:  1 1

m

ix v


 . 

     Let us consider the independent variable x, with values in the interval [-1, 1]. 
This interval can be split in two intervals, defining in each of them a polynomial. 
So, there are two cubic polynomials, one in the interval [-1, 0] and the other in 
[0, 1]. The Spline is always determined by a finite number of intervals in which 
the polynomial is defined. Although initially it starts with 2 intervals, 
subsequently the results are generalized to any number of polynomials. The 
number of intervals and therefore the number of polynomials, always implies a 
greater or lesser complexity in the geometric model and therefore in the model. 
     Initially in the interval, I, we have two polynomials defined as:  

 P= ( ( ))o o o o od x c x b xa    if x>0  

 P’= 1 1 1 1( ( ))d x c x b xa    if x<0  

     If we identify the polynomials by their coefficients there would be eight 
variables, however we identify them by the values in the nodes.  

3.1 Nodes 

In the interval [-1, 1], we choose a finite number of points called nodes.  
     In this methodology nodes are selected from the number of polynomials 
defined on the Spline  
     In a first discretization the interval is divided in two intervals [-1, 0] and  
[0, 1], in which the polynomials are defined. The nodes are 1 1n   , 2 0n   

and 3 1n  . Let be 1 2 3, ,v v v  respectively the values taken by the Spline at these 

nodes. From the family of all possible Splines generated by cubic polynomial, 
the first discretization gives only three nodes. A representation of the 
relationship  iy f x  is a function obtained from the experimental data 

 ijx and defined by: 

Zm =  1 2 3, , ,v v v x . 

 
     A discretization of the interval [-1, 1], in n subintervals would give n+1 nodes 
and the representation of the relationship will be defined by: 
 

 1 2 3 1, , ,........, ,nv v v v x   
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Figure 3: Nodes. 

4 Representation models of the relationship 

The main objective of the geometrical model is to obtain a new numerical 
methodology to model systems using representation models. This requires 
defining an optimization problem that allows determining the values of the 
Spline in the nodes. 
     If the relationship is defined by  iy f x and the following experimental 

data  ijx  are known, for the model represented by: 

 Zm =  1 2 3 1, , ,........, ,nv v v v x  ,  

the error function to optimize is defined as: 

 E=  2

i

Zm zi   

The next step is to calculate the values, iv  that minimize the error function. It 

will be necessary to determine initial values to start searching the solution of the 
system determined by the annulment of partial derivatives. 

5 Computational implementation of the geometric models 

The input variables of the problem are the set of experimental data. The objective 

is to select the set of nodes   1

1

N

i i
n




 and to determine the values of the 

polynomials  1

1

N

i i
v




. From these values, the final output of the algorithm is the 

set of coefficients,   
1

, , ,
P

i i i i i
a b c d


 with which are generated the Splines. 

     The scheme of the used algorithm is: 
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Figure 4: Scheme of the algorithm. 

     The geometric model starts with the number of Splines to be used, and the 

nodes   1

1

N

i i
n




 are set so that the number of points assigned to each interval is 

similar. 

     Obtaining polynomials from a set of values in the nodes  1

1

n

i i
v




 is performed 

by the following algorithm: 
void CalculateSpline (double *a, double *b, double *c, double *d, double *v) 
{ 
 int n=NumSplines; 
 //System creation 
 double e[n]; 
 double f[n+1]; 
 double g[n]; 
 double z[n+1]; 
 double h[n]; 
   
 for (int j=0;j<n;j++) {h[j]=XLim[j+1]-XLim[j];} 
 //Initial values 
 f[0]=1;g[0]=0;z[0]=0; 
 for (int j=1;j<n;j++) 
 { 
  e[j-1]=h[j-1]; 
  f[j]=2*(h[j-1]+h[j]); 

Reading data 

Generation of the 
Geometric Model 

Minimization Methods  
(Nelder-Mead…….) 

Values of the Polynomials 
on the nodes. 

Polynomials Coefficients. 
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  g[j]=h[j]; 
  z[j]=3*((v[j+1]-v[j])/h[j]-(v[j]-v[j-1])/h[j-1]); 
 } 
 f[n]=1;z[n]=0;e[n-1]=0; 
 //System solution 
 for (int k=1;k<=n;k++) 
 { 
  e[k-1]=e[k-1]/f[k-1]; 
  f[k]=f[k]-e[k-1]*g[k-1]; 
 } 
 for (int k=1;k<=n;k++)  {z[k]=z[k]-e[k-1]*z[k-1];} 
 c[n-1]=z[n-1]/f[n-1]; 
 for (int k=n-2;k>=0;k--) {c[k]=(z[k]-g[k]*c[k+1])/f[k];} 
 //Calculating the rest of parameters 
 for (int j=0;j<n-1;j++) 
 { 
  a[j]=v[j]; 
  b[j]=(v[j+1]-v[j])/h[j]-(2*c[j]+c[j+1])*h[j]/3; 
  d[j]=(c[j+1]-c[j])/(3*h[j]); 
 } 
 a[n-1]=v[n-1]; 
 b[n-1]=(v[n]-v[n-1])/h[n-1]-(2*c[n-1])*h[n-1]/3; 
 d[n-1]=(-c[n-1])/(3*h[n-1]); 
} 
 
int RectGeneration() 
{ 
 map<double,int>::iterator it; 
 map<double,int>::iterator it2; 
 //Sizing the window 
 double window_size=(double) NumPoints/(double) NumSplines; 
 XLim=new double[NumSplines+1]; 
 int interval_cont=0; 
 int cont_lim=1; 
 int cont=0; 
 XLim[NumSplines+1]= pointsX [0].begin()->first;   
   
 for (it=pointsX[0].begin();it!= pointsX [0].end();it++) 
 { 
  cont+=it->second; 
  it2=it;it2++; 
  if ((cont+it->second)>floor(cont_lim*window_size)) 
  { 
   if (it2== pointsX [0].end())   
   { 
    XLim[cont_lim]=it->first; 
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    break; 
   } 
   XLim[cont_lim]=(it->first+it2->first)/2; 
   cont_lim++; 
  }  
 } 
 XLim[NumSplines]=( pointsX [0].rbegin()->first); 
 interval_cont+=cont_lim; 
 return interval_cont; 
} 

6 Applications 

In the following examples, several geometric models have been determined and 
the representation models have been calculated, comparing the results with 
others methodologies. Furthermore, models whose equations are known have 
been selected, to compare the results with those obtained with the methodology 
developed in this article. Others models were generated from the experimental 
data. 
     The new methodology has been compared with others using data obtained 
from www.statsci.org. The selected examples are the following: 

6.1 Age and eye lens weight for rabbits in Australia 

The European rabbit Oryctolagus cuniculus is a major pest in Australia. A 
reliable method of age determination for rabbits caught in the wild would be of 
importance in ecological studies. In this study, the dry weight of the eye lens was 
measured for 71 free-living wild rabbits of known age. Eye lens weight tends to 
vary much less with environmental conditions than does total body weight, and 
therefore may be a much better indicator of age. 
     The rabbits were born and lived free in an experimental 1.7 acre enclosure at 
Gungahlin, ACT. The birth data and history of each individual were accurately 
known. Rabbits in the enclosure depended on the natural food supply. In this 
experiment, 18 of the eye lenses were collected from rabbits that died in the 
course of the study from various causes such as coccidiosis, bird predation or 
starvation. The remaining 53 rabbits were deliberately killed, immediately after 
being caught in the enclosure or after they had been kept for some time in cages. 
The lenses were preserved and their dry weight determined. 

Table 1:  Description of model variables. 

Variable Description 
Age Rabbit age in days 
Lens Dry weight of the ocular lens in mg. 
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     The primary source of data is [8]. They concluded that the weight of eye lens 
is a reliable indicator of the rabbit's age up to about 150 days. The deterministic 
component of their model is: 

Lens =  exp{ - / (Age + ) } 

whose representation is: 

 

 

Figure 5: Age and eye lens weight for rabbits in Australia. (Theoretical 
model.)  

     Applying the new methodology, a model by a Spline with eight intervals and 
a determination coefficient R2=0,987 has been generated. Representing the 
spline, a graph similar to the theoretical model curve is obtained. 

 

Figure 6: Age and weight of the eye lens for rabbits in Australia. (Numerical 
model.) 

6.2 Blood sulphate in a baboon named Brunhilda 

The observed responses are Geiger counter counts (times 10-4) used to measure 
the amount of radioactively tagged sulphate drug in the blood of a baboon named 
Brunhilda after an injection of the drug [9, 10].  
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     In the data source web, no theoretical model is suggested. Applying the new 
methodology, a model with a spline with eight intervals has been generated. The 
determination coefficient is R2=0,995:  
 

 

Figure 7: Blood sulphate in a baboon named Brunhilda. (Numerical model). 

7 Conclusions 

In this article a geometric model formed by a family of Splines has been defined, 
to obtain a new methodology for the study and modelling of Complex Systems. 
To do this, initially, a function of one variable has been considered, defining a 
geometric model and a new methodology to generate models has been proposed. 
     The results of the modelling methodology proposed in this article have been 
compared with those obtained by other methodologies. On the one hand it 
compares with models theoretically defined and on the other hand with models 
obtained from the experimental data. 
     In the future the authors will develop the new methodology, generalizing the 
methodology implemented in this article, to dimension n. For this, it would be 
necessary to analyze the resolution of the optimization problem with more 
complexity, in order to apply to model Complex Systems. This will involve 
having a methodology that will be used in a hybrid form with others 
methodologies to apply in higher Complex Systems. 
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