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Abstract 

Zooplankton was examined in 14 commercial shrimp Litopenaeus vannamei 
ponds in tropical Brazil to assess their composition, determine their density, and 
indicate environmental quality. In each farm, two ponds and the water intake 
point were monitored in 2003. Sampling was made with a standard plankton net 
50 micrometers mesh size. The zooplankton presented 40 taxa and was 
essentially composed of typical marine euryhaline species and suspension-
feeding forms. In all farms the dominant group was Copepoda with a total of 
45%, followed by Protozoa (18%). The most abundant meroplankton were 
Polychaeta larvae, Gastropoda larvae, nauplii of Cirripedia and zoeae of 
Brachyura with large distribution in the region, sometimes dominating the 
community. Zooplankton abundance varied from 972+209 ind m-3 to 4,235 + 
2,877 ind m-3. In the studied marine shrimp culture ponds, copepods dominance 
were replaced by protozoan and rotifers as nutrient concentrations increased with 
the culture period, indicating that zooplankton trophic structure can be strongly 
affected by the occurrence of eutrophic conditions in shrimp ponds. The 
tendency of low species diversity is indicative of an unbalanced hypereuthrophic 
system decreasing the water quality and the cultured species. These results can 
be an important appointment to understand the effects of eutrophication in 
coastal plankton structure and its effects to marine aquatic food web. 
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1 Introduction 

Shrimp farming in Northeastern Brazil has increased exponentially during the 
past 10 years from an annual production of about 7,000 tons, produced in less 
than 1000 ha of pond area in 1998 to over 90,000 tons produced in about 15,000 
ha of pond area in 2003 [1]. 
     Although farmed shrimp now represent about 50% of the penaeid shrimp 
supply, farmers have suffered significant economic losses over the last decade. 
Reasons for decline include lack of knowledge about farming techniques, poor 
farm management practices, degradation of environment/water quality through 
industrial pollution/discharge, and (most importantly), shrimp disease. In Brazil, 
mortalities of cultured shrimp due to Idiopathic Abdominal Necrosis have 
resulted in significant economic losses, and it is now spreading throughout 
Northeastern region.  
     The water quality associated with aquaculture developments is an important 
concern globally as a variety of negative environmental impacts on the receiving 
environment have been documented [2]. Most importantly, it is the water quality 
that will influence optimal shrimp growth and yield. Classically, an investigation 
of water quality involves a combination of physical variables and biological 
indicators [3].  The fact that intensive mariculture often involves the addition of 
various feeds, fertilizers and chemicals to stabilize the earthen pond bottoms, the 
use of only classic physicochemical variables to accurately assess the water 
quality in and around these systems may be insufficient. Additionally, there is 
still little information on the use of the plankton community as biological 
indicators of water quality associated with culture systems. Consequently, this 
research would provide more data on the use of zooplankton as indicators of 
water quality. Zooplankton clearly contributes to the nutrition of shrimp 
postlarvae immediately after stocking [4]. Overall, this paper will be able to 
provide useful baseline water quality data that may enable the improvement of 
farm management processes. 

2 Materials and methods 

This research was based in 108 zooplankton samples collected during three 
campaigns from October 10th to November 19th 2003 in 14 farms that intensively 
cultivate the marine shrimp Litopenaeus vannamei. Campaign 1 was carried out 
from 19 to 25/October; Campaign 2 from 01 to 07/November; Campaign 3 from 
14 to 17/November. In each farm, two ponds and the water intake point were 
monitored. The studied farms are located in Ceará, Piauí and Rio Grande do 
Norte states - Brazil (Fig. 1, Table 1). The farms produce shrimp by intensive 
culture (30 to 120 shrimps.m-2), feeding exclusively with balanced ration.  
     Zooplankton sampling at each station was collected with a standard plankton 
net with mesh size of 50 micrometers fitted with a flowmeter (Hydrobios, Kiel); 
3 minutes horizontal subsurface hauls were made at each pond.  Samples were 
preserved in a 4% buffered formalin/seawater solution. Zooplankton species 
were identified until the lowest taxonomic unit possible and taxon abundance 
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Figure 1: Study area of shrimp culture in Northeastern Brazil. 

Table 1:  Shrimp culture farms in Northeastern Brazil. 

FARMS (City) Latitude Longitude 
Ceará State    
Promares, Aquafort and Samarisco 
(Camocim) 

2º54’S 40º50’W 

Papagaio, AS Marine and Joli(*) (Acaraú) 2º50’S 40º07’W 
Compescal, Cina and Vip Camarões (Aracati) 4º33’S 37º46’W 
Piauí State   
Camapi, Secom and  Camarões do Brasil 
(Cajueiro) 

2º55’S 41º20’W 

Rio Grande do Norte State   
Potiporã(*), MRG(*) and Aquática(*) 
(Pendências) 

06º16’S 35º29’W 

 (*) Samples collected during the 2nd and 3rd campaigns. 
 
(per cubic meter) counted under a microscope (1 mL subsample). These samples 
were taken with a Stempel-pipette of each the entire sample (250 mL).  
     The Shannon index (H’) was applied for the estimation of zooplankton 
community diversity based on log2 [5]. Evenness was calculated according to 
Pielou [6]. 
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3 Results 

The zooplankton was essentially composed of typical marine euryhaline species, 
distributed in 40 taxa. The following Phyla were present: Sarcomastigophora, 
Cnidaria, Nematoda, Rotifera, Mollusca, Annelida, Crustacea, Bryozoa and 
Chordata. The dominant taxa were Copepoda (16 species and made up 44% of 
relative abundance) as adult and juvenile forms (nauplii and copepodits), 
followed by Protozoa (18%) and Rotatoria (6 species with 12% of total relative 
abundance) (Fig. 2). The meroplankton was represented by Polychaeta larvae 
(dominated by spionids), Gastropoda and Bivalvia larvae, nauplii of Cirripedia 
and zoeae of Brachyura with large distribution in the region, sometimes 
dominating the community.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Relative abundance of the main zooplankton groups in shrimp 
culture ponds. 

     Among Copepoda predominated Parvocalanus crassirostris, Acartia 
lilljeborgi, Oithona oswaldocruzi, Oithona hebes and Euterpina acutifrons.  
     Protozoa was mainly represented by the atecate ciliata and the tintinnina 
Tintinnopsis spp. and Favella ehrenbergi. 
     Rotifers presented high quantities of Brachionus plicatilis in the aquaculture 
ponds. Many stages of Nematoda, found at Cina and Papagaio farms belonged to 
Ancylostoma duodenale and according to Rey [7] the larvae develop in the 
aquatic environment, at the rainy season, between temperatures between 23 and 
30oC and the adults develop well in humid soil rich in organic residuals.  
     In general, species diversity was low. Lowest diversity index was found in 
Aquafort farm (1.26 bits.ind-1) and the highest at Promares farm (1.75 bits.ind-1). 
Minimum evenness was registered at Aquafort farm (0.44), caused by the 
dominance of few species (mainly atecate ciliata and Copepoda nauplii) and the 
maximum was 0.6 at Vip Camarões farm.  
     Zooplankton total density was high with a minimum of 3,875 org.m-3 
(Aquática farm) and a maximum of 12,706 org.m-3 (Compescal farm). The 
average zooplankton abundance varied from 972+209 ind.m-3 to 4,235+2,877 
ind.m-3 (Fig. 3), with an average of 2255+975 ind.m-3.  
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Figure 3: Zooplankton density from shrimp culture ponds in Northeastern 

Brazil. 

     In a general way, the intake points presented better conditions than most 
ponds, in which dominated many times organic pollution indicators (atecates 
ciliates, rotifers, polychaeta larvae, nematode, among others). Even presenting 
strong organic decomposition charge, there were copepod nauplii, and Bivalve 
larvae in high densities, showing the great importance of the marine flux in 
renewing the environment and improvement of environmental health.  

4 Discussion  

The use of physicochemical indicators exclusively to assess the water quality of 
intensive mariculture system is insufficient mainly if there is an investigation 
into the extent of the influence of the farm wastewater on the immediate 
environs. Previous studies that conclude that the use of traditional water quality 
indices to determine the effect of aquaculture effluent on the receiving 
environment is mainly limited to areas near to the discharge point [8,9].   
     We considered zooplankton indices to be useful water quality indicators for 
the shrimp culture facility and its immediate environs. This was on the basis that 
there were fairly distinct patterns in the species composition and abundance as 
the water quality changed spatially and temporally. This may be attributed to the 
fact that the zooplankton community itself responds directly or indirectly to 
changes in the physicochemical variables and the availability of phytoplankton 
food [10] and is therefore less affected by manipulation via farm management 
processes.   
     This study examined the seasonal and tidal variation of microzooplankton in 
Northeastern shrimp farms to develop a more comprehensive understanding of 
the zooplankton role in these conditions. In general, little is known about the 
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zooplankton dynamics in tropical estuaries, and according to Buskey [11], 
zooplankton rarely have been studied concurrently in tropical or temperate 
estuaries, even less studies exists on shrimp ponds. 
     Studies of zooplankton in shrimp ponds have shown that these are complex 
assemblages with rapid temporal changes in structure [4]. The main factors 
influencing these changes are variations in source of food, predation and the 
influences of variations in physical and chemical water quality parameters. The 
results here described reveals that nutrient input affected both density and the 
relative species composition of the zooplankton community. Therefore 
zooplankton assemblages could be an excellent bioindicator of water quality of 
shrimp ponds. 
     The dominant taxa were Copepoda and predominated the Brazilian 
eurihaline-estuarine indicators formed by Parvocalanus crassirostris, Acartia 
lilljeborgi, Oithona oswaldocruzi, Oithona hebes and Euterpina acutifrons 
[12,13]. 
     Acartia lilljeborgi had an important role in July (rainy season) in Sergipe 
River estuary and this may be related to the high amount of detritus occurring in 
this season that is consumed by this species, as has been demonstrated through 
stable isotope measurements and feeding experiments performed in laboratory 
and in situ [14,15]. Parvocalanus crassirostris was important in July and it is 
very common in most Brazilian estuaries [12] even those dramatic impacted 
[16,17]. Parvocalanus crassirostris feeds significantly on picoplankton and 
nanoplankton and behaves as opportunistic particle feeder, showing higher 
consumption rates upon the most abundant cells (2-5 µm nanoplankton) [18]. 
Generally it is an abundant species in euthrophic systems.  
     Copepods and other crustaceans, larvae of polychaetes, larvae of insects, 
mollusks (Bivalvia and Gastropoda larvae), ostracods, rotifers have been 
considered the most important sources of food for shrimp [19–21, among others). 
The assemblages found in the studied ponds have a variety of roles within the 
pond ecosystem. Grazing zooplankton influences the dynamics of pond 
phytoplankton [4]. Predation of zooplankton by shrimp [22] may transfer a 
significant proportion of the nutrients from natural biota to the shrimp [23].  
     Tintinnids constitute important component of the planktonic microprotozoan 
community in most marine environments [24,25], and they can be important 
occasionally in estuarine waters [26]. High abundance, fast reproduction rates, 
and short generation times, coupled with the high capacity to use a large 
spectrum of food resources, enhance the importance of tintinnids as a key trophic 
link between the microbial and the metazoan compartments [26–28].  
     Some species have an apparent cosmopolitan distribution in the seas and 
oceans. Favella ehrenbergii has been commonly found in costal and estuarine 
areas in Brazil, with a high density in some periods [29–31]. The singular higher 
values of F. ehrenbergii densities were responsible for the structure disturbance 
of the microzooplankton community (negative contribution to the Shannon’s 
diversity index) in the present study. The diet of F. ehrenbergii is composed 
mainly of nanoflagellates [32]. This species occurs in regions with high 
temperature and wide salinity ranges [33]. 
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     Ciliated protozoa are widely distributed in the aquatic environment and play 
an important role in the energy flow of aquatic ecosystems, as predators of 
bacteria, algae, and fungi, and as a food source for metazoa, such as fish and 
shrimp larvae [34]. However, their occurrence and role in shrimp production 
systems have seldom been investigated. Bratvold et al. [35] reported that the 
zooplankton from intensive shrimp production systems were dominated by 
ciliates, at least during part of the production cycle. Decamp et al. [36] reported 
that ciliates could reach extremely high concentrations (as much as 6000 
cells mL-1) in zero-water exchange systems, with fluctuations in abundance 
reflecting the impact of water salinity, dynamic interactions between ciliates, and 
their diverse roles within the shrimp production system. 
     Among the registered rotifers outranked Brachionus plicatilis in the 
aquaculture ponds. Rotifers are valuable live food for larval fish and crustacean 
culture and also have been used as indicators of trophy. Several characteristics of 
rotifers, including their nutritional quality, body size and relatively slow motility 
have contributed to their usefulness as good prey for active larvae [37]. The 
rotifer Brachionus plicatilis has been most widely used as essential food source 
in raising marine fish, shrimp and crab larvae due to its tolerance to the marine 
environment [38]. The rotifer B. plicatilis is a euryhaline species and in nature, 
density peaks of these species are associated with high eutrophication near 
village and/or processing plants of aquatic and/or poultry products [39].  B. 
plicatilis and others rotifers species dominated the estuarine region of the Ipojuca 
River (Northeastern Brazil) that receives high sewage loads from many cities and 
industries [29].  
     Neumann-Leitão and Matsumura-Tundisi [40] reported the importance of the 
marine flux renewing the zooplankton community in a highly impacted estuary 
in Northeastern Brazil. 
     It can be concluded that the high amount of atecate ciliates, mainly in two 
farms indicated a poor water quality. In general, the colonization by ciliates 
occurs associated to the high levels of organic matter. The dominance of these 
species in the ponds can favor the bacterioplankton control and add additional 
food to the ponds. However, in high quantities as presently found in the ponds 
indicated an enriched organic matter environment, and the effluent of theses 
ponds can negatively impact the water of the receptor area. In one farm, it was 
registered a Mysis stage with ectoparasites protozoan as Vorticella spp. These 
parasites affect negatively the molts and the development of the infected 
organisms, a fact that was observed in this farm and also in another farm where 
parasitic nematodes were registered. Thus, it is most recommended to implant an 
environmental education program to the shrimp culture farmers, in order to 
introduce better management practices. 
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