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Abstract 

When studying and modelling Complex Systems where there can be a 
considerable number of variables and relations, it is very important to obtain 
methodologies that help us to model natural phenomena, these being phenomena 
present in the physical world and real life.  
     Hypothetically, if we consider a relation defined by a set of 
variables, ( )1 2, ,......, ny f x x x= , symbolic and numerical methodologies can be 
obtained. 
     This article presents a model of n-dimensional finite elements that provides 
the basis for defining a numerical methodology for studying and modelling 
complex systems. The use of n-dimensional elements then allows us to represent 
the relation using the values of the same for a finite number of points, this being 
carried out by resolving an optimization problem. 
     To obtain the geometric model it was necessary to use the correct data 
structure design and programming to allow effective management of the 
acquisition and storage of the elements, the nodes considered for each, as well as 
the functions and procedures needed to approach the problem of optimisation. 
     Finally, we applied the methodology to determine the geometric model and 
the problem of optimization to study and model an environmental problem  
Keywords:  modelling, finite elements, Complex Systems. 

1 Introduction 

A complex system is considered to be any system where the number of variables 
and relationships that affect their evolution is high. In these systems, it is very 
important to acquire new methodologies that help us to model said relationships. 
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models defined in Complex Systems 
A geometric model for the generation of



This allows us to model natural phenomena, these being phenomena present in 
the physical world and real life.  
     By considering a hypothetical relation defined by a set of 
variables, ( )1 2, ,......, ny f x x x= , symbolic and numerical methodologies can be 
obtained. 
     In order to obtain models defined on the basis of the experimental data, there 
are several symbolic methodologies in scientific literature (Cortés et al. [1]; 
Splus [2]; Spss [3]; Villacampa et al. [4]; Verdú and Villacampa [5].) In said 
methodologies, the linear models are analysed in the same way, with the search 
for non-linear models being treated differently. With Splus and Spss, we can 
obtain a non-linear model every time programmes are run, as long as the 
modeller proposes a type of mathematical equation depending on certain 
parameters that are calculated on the basis of the experimental data. In the 
methodology developed in Cortés et al. [1]; Villacampa et al. [4] and 
implemented computationally, each time the programme is run families of 
models are generated, transforming them so that they can be treated in the same 
way as the linear models. In addition, Verdú and Villacampa [5], generates 
families of models in accordance with non-linear model types in the parameters. 
With regard to numerical methodologies, the article Pérez-Carrió et al. [6] 
develops a numerical methodology to be applied in two dimensions, using finite 
elements.   
     To study complex systems such as natural systems that include the material 
and physical world, such as an ecosystem, we need to develop methodologies 
that allow us to introduce greater complexity and which can then be used in 
hybrid fashion with the above-mentioned methodologies. 
     Acquisition of a methodology for 2n ≥  has to be computationally valid for 
large values of n. This means that we have to treat the problem differently to the 
method developed for 2-dimensional finite elements (Pérez-Carrió et al. [6]) both 
as regards the methodology and the algorithm. This is why the writers start by 
defining a geometric model of n-dimensional finite elements in such a way that it 
allows enhanced management of use and storage when implemented 
computationally. 

2 Geometric model of n-dimensional finite elements 

For any natural number, we define a domain contained in nℜ , in which we 
define a family of finite elements recurrently. 
     For example, with a natural number d N∈ , the domain is defined as the 

subset dD ⊂ ℜ defined by the hypercube [ ]0,1 dD = .  

2.1 Discretization 

For each edge we are going to consider discretizations with the same number of 
elements, as well as the same number of nodes. If the number of elements for 
each edge is c , the number of nodes defined is 1c + . Therefore, the model 
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defined will consist of a total of dc  elements and ( )1 dc + nodes. From now on, 
we shall denominate the value of c  as the complexity, this being the number 
considered initially to generate discretization in finite elements. 
     For a generic element, we shall define a set of 2d  nodes per element, so that 
2d  elements coincide in an internal node.  
     The need to consider relations, ( )1 2, ,......, ny f x x x=  of a certain complexity 
leads us directly to consider a geometric model that is complex in the sense of 
the number of nodes and elements, first having to modify the methodology 
normally used in 2ℜ  [3] to enhance the computational implementation of the 
model. 

2.2 Elements and nodes in the geometric model 

For the domain [ ] [ ] [ ] [ ]0,1 0,1 0,1 ... ... 0,1d dD x x x= = → , we decided to deal 
with the numbering of both elements and nodes by starting the variation more 
quickly in the first interval, then the second and so on. 

2.2.1 Global representation of elements and nodes 
We now define two equivalent representations that offer better management of 
the elements and nodes for which we consider global numbering starting at "0" . 
 

Definition 
For an element whose global numbering is defined by M , with c  being the 
complexity defined, its representation is defined by a multi-index that gives us its 
position and is calculated by expressing M  in c  basis, but ordering the 
coefficients in the opposite direction to normal. 
     For example, with [ ]30,1D = , if we consider 4c =  and the element with 

global numbering of 6M = , then ( )2,1,0M = . 
 

Definition 
For a node whose global numbering is defined by M , with c  being the 
complexity defined, its representation is defined by a multi-index that gives us its 
position and is calculated by expressing M  on the basis of 1c + , but ordering 
the coefficients in the opposite direction to normal l. 
 

Definition Directional Multi-Index (DMI) 
A DMI is any multi-index that can be written as: 
 

( ){ }2
, , ,........., 0,11 2 3 1

/
d

j j j j jd i j
MID =

=
=  

Ecosystems and Sustainable Development VII  73

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2009 WIT PressWIT Transactions on Ecology and the Environment, Vol 122,



     Using the representation of each multi-index in 2 basis, we can also obtain 

global numbering of the directional multi-indexes { }2
1

d
mi i=

. 

2.2.2 Determination of the nodes associated with an element 
In order to determine which nodes are associated with an element we simply 
need to start from the node closest to the origin or node "0"  and add the multi-
indexes denominated as directional multi-indexes. In addition, the methodology 
defined above directly defines the node closest to origin, as it corresponds to the 
multi-index associated with the element expressed in 1c +  basis. 
     For a generic element, we define a family of interpolation functions or form 
functions equal to the number of nodes in the element. 

{ } ( )2
, ,......,1 21

d
N N s s si m di i

m MIDi

 = =  
∈

 

2.2.3 Coordinates 
For an element, we consider the global coordinates of the nodes associated with 
said element, { }Dmi m MIDi∈

. With ( )1 2, ,......, ne e e  also being the coordinates of 

the node closest to origin, then its coordinates are ( )1 2, ,......,  
im n ie e e h mD = + , 

( )( )1 2, ,...., ,...
i i i i im m m m k m nD D D D D= ,where h represents the size or length of the 

elements in each sub-interval.  
     Throughout this article h is called the “discretization size” or “mesh 
refinement”. 
 

Definition 
For a point of global coordinates ( )1 2, ,......, nx x x  found in an element whose 

closest node to origin is ( )1 2, ,......, ne e e , the relative coordinates are defined as, 

( ) ( )1 2 1 1 2 2, ,......, , ,......,R R Rn n nx x x x e x e x e= − − − , with 0,Rjx h  ∈ . 
 

Definition 
The system of local coordinates, ( )1 2, ,......, ns s s , with [ ]1,1is ∈ − , is defined by, 

2 1k Rks x
h

= −  

Therefore, it can be expressed: 
 

( )

( )
1

1 2

1
2

, ,.....,   
i i

k k k

k m d m k
m MID

hx e s

x N s s s D
∈

= + +

= ∑
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3 Computational implementation of the geometric model 

The first step towards obtaining the new complex methodology is the generation 
of a geometric model of n-dimensional finite elements. Using n-dimensional 
finite elements allows us to represent the relation on the basis of the values of the 
same at a finite number of points, through resolution of an optimization problem. 
     To obtain the geometric model, it was necessary to use data structure design 
and programming that allowed us the effectively manage the acquisition and 
storage of the elements, the nodes considered for each and the functions and 
procedures used to approach the optimization problem. 

3.1 Numerical methodology 

The geometric model defined above is applied to generate a new modelling 
methodology. We start with an a priori relation between a set of variables 
defined by ( )1 2, ,......, dy f x x x=  and of which we know a set of experimental 
data. 

{ } 1

n
j j

y
=

 { } ( )1 21
/ , ,......,

n
j j j j jdj

P P a a a
=

=  
 

We can define a model function generated from its values at the nodes defined in 

the geometric model, ( )( )1 1
, ,......, do c

u u u u
+

=
G

 which we represent at a point P  

by ( ) ( )FEM P N P u=
JJJJJJG G

i . 

     The vector ( )( )1 1
, ,......, do c

u u u u
+

=
G

 is obtained from the experimental data 

and with the condition that the following error function is minimized. 
 

( )( )2

1

NP

j
j

E FEM P u z
=

= −∑
G
i (*) 

 

     The authors called this problem (*) the optimization problem. 
     The dependence of the model on the experimental data leads to an 
optimization problem that causes problems when the data is insufficient and the 
equation system resulting from seeking the minimum is also a system with more 
than one solution. To these difficulties we have to add that arising from its very 
complexity. 

3.2 Computational algorithm to generate the geometric model 

When studying the computational implementation of the geometric model 
underpinning the new methodology, we opted to use an abstract global approach 
within the framework of object-oriented programming (OOP).  
     Said approach has the advantage of a broad focus that allows us to deal with 
problems other than the original and take advantage of all the code implemented.  
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     The analysis was carried out using two large blocks of code: 

• Block I: File read and input formats interface. 
 

• Block II: Generator of the geometric model and the equation system. 
 

     For Block I, corresponding to the file read and input formats interface, we 
programmed a single library. This includes the functions and procedures required 
to read the data in different formats (plain text file, Excel file and XML file), as 
well as transforming the data to the hypercube [ ]0,1 dD = . It also includes the 
generation of “.log” reports used to execute the application. 
     Block II corresponds to the generator of the geometric model presented in this 
article and the equation system generator that will solve the optimization 
problem and allow us to obtain a new modelling methodology. Two libraries 
were programmed for this block: plantilla_problema and lib_fem.  
     The plantilla_problema library defines the following objects: 
 
 

• TProblema – Generates a dynamic data matrix in which the 
experimental data is stored. It also stores all information associated with 
the data file routes. One of the properties of this object references the 
structures needed to store the discretization of the domain [ ]0,1 dD =  in 
a finite family of finite elements.  

 
 

     The lib_fem library defines the following objects: 
 
 

• TElemento – For a generic n-dimensional element, in this class we store 
the information corresponding to an element and its nodes. We define 
the descendant class, TElemento_NDCuadrado for using an n-
dimensional hypercubic TElemento.  
It contains the functions required to carry out transformations between 
the representation in directional multi-indexes DMI and the global 
index.  
 
 

• TMesh – A generic mesh containing the set of elements and nodes 
ordered by their global indexes. 

 
 

• TDiscretización – Represents the finite element model defined for the 
whole domain. This means that this object stores the mesh information 
obtained from discretization of the domain. As descendant of this 
object, we implement the TDiscretización_NDCuadrado class, this 
being the class associated with discretization in hypercubes. It is a 
representation of the generic element [ ]0,1 d , which includes methods 
needed to calculate the form functions of a point in local coordinates, as 
well as the functions for the change between the local, relative and 
global coordinates of a point. 

 
 
 
 

76  Ecosystems and Sustainable Development VII

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2009 WIT PressWIT Transactions on Ecology and the Environment, Vol 122,



The geometric model: algorithm 

The algorithm for constructing the geometric model can be broken down into 
three main operations. These are: 

1. File reading 
2. Construction of the geometric model 

The more detailed analysis of each of these operations is as follows: 
 
Define the library lib_fem 

 Define the object 

 File reading 

open input file 
read number of rows, fn  

read number of columns, cn  
Define independent variable data matrix  
Define dependent variable data matrix  

close input file  
 If the variables are not normalised, normalise the values to [ ]0,1 dD =  
    
Generation of the geometric model 

Define refinement 1h c=   

Creation of Mesh object 
For i=1 to number of nodes do 

Generation of node i 
Acquisition of the multi-index of the node 
Calculation of the global coordinates of the node 
Store the node in the Mesh object: TMesh 

  End loop  
For i=1 to number of nodes do 

Generation of element i 
Acquisition of the multi-index of the element 
Calculation of the nodes associated with an element 
 Store each node in TElement 
Store the element in the Mesh object 

  End loop 

3.3 Methodology of the modelling 

With the previously generated geometric model, we generate the algorithm that 
allows us to resolve the numerical methodology defined in Section 3.1 The first 
step in said resolution is the generation of an equation system that is 
implemented computationally as follows. 
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 Define system matrix  
 For i= 1 to number of nodes do 
  Calculation of local coordinates 
  Determination of the current element 
  Calculation of the form functions at the point 
  Modification of the system matrix 
 End loop. 

4 Applications 

Finally, the previously developed methodology was applied by determining the 
geometric model for the data relating to soya bean cultivation in Azul, Buenos 
Aires Argentina and a study was carried out of the phenological stage from 
sowing to flowering.  In this case the authors have resolved the optimization 
problem comparing the results with the model obtained symbolically. In 
addition, the geometric model was applied to a set of data allowing 3D 
visualisation. 

4.1 A phenological model from the soybean 

It has been considered data from soybean cultivation in Asgrow 4656, to 
quantify the effect of the sum of temperatures and the photoperiod on the 
duration of the phonological period from sowing to flowering. The first data 
come from years 1997-1998 and the results are compared with the models 
obtained with the symbolic methodology developed in Verdú and Villacampa 
[5]. The second set of data are compared using the lineal model published in 
Confalone et al. [7] for the years 1997–1999, where the average sum of 
temperatures and the photoperiod are considered. 

4.1.1 Geometric model 
In both cases the geometric model would be: 
The first step it is the selection of the complexity. 
With this complexity, the program generates the mesh, obtaining the set of 
nodes, elements and the relations between them.  

4.1.2 Cultivar Asgrow 4656, 1997-98 
In this case it has been possible to solve the problem of optimization and to get 
the finite element model, to compare the methodology with the results obtained 
by the methodology developed in Verdú and Villacampa [5] that gives the next 
equations: 
 

20.098 7.954 117.75      0.99DDS ST F R= + + =  

( ) ( )3 2 20.00125 5.501 0.1593 10.5434        0.99DDS ST F R= − + + =  
 

     Comparing the errors between the estimated values on the points, obtained by 
these equations and the finite element method, and the experimental ones, it is 
clear that the results are similar or even better in many points. 
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Figure 1: EF model, linear model and non-linear model 1997–1998. 
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Figure 2: Errors, 1997–1998. 
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Figure 3: EF model and linear model, 1997–1999. 
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4.1.3 Cultivar Asgrow 4656, 1997–1999 
In this case it has been possible to solve the problem of optimization and to get 
the finite element model, to compare the methodology with the linear model 

 
20.106 0.072 1.7006    0.99DDS ST F R= − + =  
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Figure 4: 

 
 

 

Figure 5: Nodes, elements and coordinates change. 
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Errors, 1997–1999. 



 

Figure 6: Geometric model. 

4.2 Geometric model in 3D 

the domain [ ]30,1  using a function, ( ) 2, , 2f x y z x y z= + + , to get the values and 
distorting them with a normal error. 
     The 3-dimensional model is presented in the next graphics where the program 
main window and the data and discretization are shown. 

5 Conclusions and future research 

The first step in obtaining the new methodology for studying and modelling 
complex systems involves generating a geometric model of n-dimensional finite 
elements. The use of n-dimensional elements then allows us to represent the 
relation, ( )1 2, ,......, ny f x x x= , using the values of the same at a finite number of 
points, and from the resolution of an optimization problem (*). 
     When obtaining the geometric model, it was necessary to design and 
programme the data structures correctly, so as to allow effective management of 
the acquisition and storage of the elements, the nodes considered for each and the 
functions and procedures used to deal with the optimization problem (*). 
     Future research should focus on obtaining a method that effectively resolves 
the optimization problem (*) defined by an equation system for the case of 

2n ≥ . This is due to the dependence of the experimental data function and the 
complexity defined in the geometric model, which leads to the resolution of the 
optimization problem (*) and that of the equation system presenting problems 
due to inadequate data and the multiplicity of the solution. 

Ecosystems and Sustainable Development VII  81

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2009 WIT PressWIT Transactions on Ecology and the Environment, Vol 122,

The data of this model are obtained from a randomly generated set of points in 
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