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Abstract 

In this report we summarize the results in the application of the Direct Lyapunov 
method to the generalized replicator systems with the weighted sum of nonlinear 
pairwise interactions. These complex systems define the properties of a system 
composed of objects that are coupled via nonlinear pairwise interactions. It is 
shown that there exist two types of thermodynamic Lyapunov functions:  
fitness-like and entropy-like. As an example it will be established that practically 
all known thermodynamic characteristics may be obtained from entropy-like 
Lyapunov functions for replicator systems. 

“The positive time direction is associated with the increase of entropy. Let us 
emphasize the strong and very specific way in which the one-sidedness of time 
appears in the second law. According to its formulation it leads to the existence 
of a function having quite specific properties as expressed by the fact that for an 
isolated system it can only increase in time. Such functions play an important 
role in modern theory of stability as initiated by the classic work of Lyapunov. 
For this reason they are called Lyapunov functions (or functionals). 
    The entropy S is a Lyapunov function for isolated systems. As shown in all 
textbooks thermodynamic potentials such as the Helmholtz or Gibbs free energy 
are also Lyapunov functions for other “boundary conditions” (such as imposed 
values of temperature and volume). 
    In all these cases the system evolves to an equilibrium state characterized by 
the existence of a thermodynamic potential. This equilibrium state is an 
“attractor” for non-equilibrium states.” 

Ilya Prigogine 
Nobel Lecture, 8 December, 1977 
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1 Pairwise interactions: an outlook 

The understanding of the nature of the complex interactions between species is 
of great importance to the study of ecosystems’ functioning. As well as the 
interactions, the species composition also plays an important role in the 
dynamics and functioning of the system. Ecology deals with interactions and for 
modeling many ecological processes it is necessary to include explicitly the 
dynamic interaction between two or more populations. Consequently, binary 
interactions, such as predation, parasitism, competition, mutualism and others, 
constitute foundational concepts in population ecology and hence they occupy an 
important fraction of most ecology research. The simplest model of a community 
described by a sequence of pairwise interactions is one in which the per capita 
reproductive is a sum of effects by other species. 
     Basic models that form the foundation of these interactions, such as the 
Lotka-Volterra equations and replicator equations, generally assume that 
interactions are an intrinsic property of the two interacting species and therefore 
are governed by their respective densities. That is, parameters determining the 
strength of interactions between species (the interaction coefficients) effectively 
are assumed to be independent of the community milieu in which these species 
are embedded. Consequently, more complex communities can be assembled 
from these pairwise interactions. 
     Lotka-Volterra and replicator models have played an important role in 
ecology since their introduction in the early 20th century. These systems serve as 
a basis for the development of more realistic models that involve ratio dependent 
functional responses. The classical model allows for the wide range of pairwise 
interactions between species such as predator/prey, competing species, and 
symbiotic relationships. These relations lead to a quadratic system of differential 
equations. 
     Frequently, interaction in an economic, social, political or computational 
context is local in the sense that it consists of pairwise interactions between 
neighbors. In widely used pairwise matching models, if an object interacts at all 
in a particular period, it interacts with only one (temporary or permanent) 
partner. Since the early 90s, a sizeable literature on pairwise interactions between 
neighbors has emerged. The novel feature is that direct interaction of an object is 
confined to his neighbors, frequently but not necessarily a small group, while 
indirect interaction via a chain of neighbors may occur between any pair of 
objects. As a rule, it has been assumed that the underlying interaction structure 
does not change over time. Very valuable insights have been gained from 
studying pairwise interaction under the assumption of a fixed interaction 
structure. 
     In systems composed of many elements, rich and complex behavior can 
emerge from simple interactions. Indeed, for many systems studied in ecology 
and biology, we can understand almost everything by thinking just about 
interactions between pairs of elements. 
     Recent work has shown that probabilistic models based on pairwise 
interactions – on the simplest case, the Ising model – provide surprisingly 
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accurate descriptions of experiments on real biological networks ranging from 
neurons to genes (Bialek and Ranganathan [1], Roudi et al. [2]). 

2 Nonlinear pairwise interactions 

One of the important assumptions in Lotka-Volterra and replicator systems is 
that the functional responses are linear functional responses. Usually additive 
models for predicting combined interactions effects cannot account for non-
linearities in combined functional response introduced by non-trophic 
interactions (Ayala et al [3]). 
     Let us consider the system of n types of interacting objects. It may be species, 
individuals, agents, traits, particles etc. Let  ip t  is the relative frequency of 

object  i  at time t. The state of the system at time t is simply the vector 

      1 ,..., np t p t p t  which is clearly constrained to lie in the standard 

simplex: 

 : 0, 1,..., , 1    n T
ip p i n e p   

     We propose that there are exists the set of probability distributions functions: 

  , 1,...,i if p i n , which for any i give us probability of the interaction between 

object i and any other objects in system under consideration. So, the probability 

of the pairwise interaction between type i and j will be     i i j jf p f p . 

     Also, we propose that there are exists the measure ijw  of pairwise interaction 

strength. So we have an interaction (or community) matrix   ijW w . Following 

(Schneidman et al. [4]) in small window of duration   we received, that 
dynamic of our state variables governed by the next weighted sum of nonlinear 
pairwise interactions: 

       
1

  
n

i ij i i j j
j

p t w f p t f p t  

     Based on these assumptions, and taking into account the normalizing 
condition:  p t   after simple algebra one can receive the next generalized 

replicator equations Pykh [5] 

     

     

1

1

, 1

1,...,

n

i i i ij j j
j

n

jk j j k k
j k

p h p f p w f p

p w f p f p i n








 




 







                     (1) 

     Here, if  are nonlinear response functions (probability distributions) 

satisfying the conditions  0 0if  , 0i if p   0ip  , and 0i if p   for 

0ip  ;  ijW w  is the matrix of interactions; the function  : 0,h     is 
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determined by the particular problem under consideration;    , ,p f p  e  

where ,   is the inner product; and       1 1 ,..., n nf p f p f p . Obviously, 

since   , 0p t e and  0 0if  , the simplex  and each of its faces are 

invariant sets of system (1). Note, that condition  1 1if  is not essential in our 

consideration. 
     System (1) has a very wide range of applications, from mathematical genetics 
and ecology (Fisher [6]) to neural networks and optimization problems (Bomze 
[7], Morgan and Steiglitz [8], Hofbauer and Sigmund [9]). Recently, it was 
shown by Helbing [10] that system (1) can be obtained from Boltzmann-like 
equations. Thus, there are grounds for believing that system (1) determines the 
evolution of probability distributions for a fairly wide variety of processes. 

3 The main mathematical results 

To state the main theorem, we need some preliminary results. First, it is 
convenient to pass to the matrix form of representation. In this form, system (1) 
becomes 

      1 ,p h p f Wf p f Wf  e                  (2)  

where    1,..., nf diag f f . 

     If the matrix W is nondegenerate, then system (2) has at most one isolated 
equilibrium point in Int , which we call nontrivial. 
Statement [5]. System (2) has a unique nontrivial equilibrium point ˆ Intp    if 

and only if the vector 1W  e is either strictly positive or strictly negative.    

Theorem 1 [5]. If the matrix W is symmetric, then the function 

       2,E p f p Wf p p                 (3) 

is a Lyapunov energy function for system (2).   

Corollary [5]. If system (2) has a nontrivial equilibrium point ˆ Intp  , then it 

is totally stable in Int  if and only if the matrix W has  1n   negative 

characteristic numbers.   

Theorem 2 [5]. If  TW W  and system (2) has a nontrivial equilibrium point 
ˆ Intp  which is totally stable in Int , then the entropy-like function: 

   1 ˆ

ˆi

i

pn
i

i ip

f dx
H p

f x

                                        (4)  

is a Lyapunov energy function for system (2), and  

      ˆ ˆ 0.H h p E p E p              (5) 

     Now, we can state the main result without restriction TW W : 
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Theorem 3 [11]. If system (2) has a nontrivial equilibrium point p̂ Int  and 

the matrix  TW W  has  1n  negative characteristic value, then the function 

   1 ˆ

ˆi

i

pn
i

i ip

f dx
H p

f x

    

is a Lyapunov energy function for system (2).   

Corollary [11]. If the conditions of Theorem 3 are fulfilled and W  is such that 
1TW W   is a stochastic matrix, i.e., 

1TW W  e e , 
then the entropy production is defined by the formula 

        ˆ ˆ 0H p h p E p E p                                 (5) 

     Based on this theorem we can receive a set of response function for existing 
entropy measures and construct new entropy measures for any response 
functions. Short summary of this approach listed below in table 1 and 2. 

Table 1:  Different entropy measures. 

Response function Entropy Name 
Logarithmic 

    1
1 ln

 i i if p p  

 

 
1

ln



n

i i
i

H p p p  

 
Bolzmann 
Entropy 

Power-law 

  1 ;

1

q
i i if p p

q




 

 

 
 1

1





 q

ip
H p

q
 

 
Tsallis 

Entropy 

Logistic 

  1


 ii i p
f p

b ce 

0, 0, 0  b c   

 

   
1

ln 1 



  i

n
p

i

H p e   

 
Logistic  
entropy 
(new) 

4 Thermodynamic characteristics 

We have received expression (3) for replicator’s systems energy, expression (4) 
for systems entropy and expression (5) for entropy production. On the analogy of 
thermodynamics laws, we can receive expression for systems temperature. 
Indeed if we redraft (5) as follows: 

   ˆdH
h p p

dE
 , 

then according to Clausius definition the systems temperature T is equal: 

     1ˆˆT h p p


  

Ecosystems and Sustainable Development VII  47

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2009 WIT PressWIT Transactions on Ecology and the Environment, Vol 122,



Table 2:  Different distance measures. 

Response function «Distance» Name 
Linear 

  i i if p p  1

ˆ ln
ˆ


n

i
i

i i

p
H p

p
 

Relative entropy 

Linear 

  i i if p p  1

ˆ ln
ˆ

ˆ, ln ,



 




n

i
i i

i i

p
H d p

p

d p d p

 
Weighted 

relative entropy 

Logistic 

  1

0, 0, 0




  

ii i p
f p

b ce
b c




 

ˆ
1

1ˆ ln
1






 
   


i

i

pn

i p
i

e
H f

e




 

Weighted 
logistic entropy 
(new) 

 

     Note that in this case the temperature depends from systems steady-state. 
Now let us consider the exergy of the system. Exergy is a measurement of how 
far a certain system deviates from a state of equilibrium with its environment. 
Exergy for a system in an environment usually is written as: 

 ˆEx T H H   

     So we have a lot of different expression for exergy dependence from entropy 
i.e. from response function. If we put: 

  1

1 ln
i i

i

i

f p
p






 

where vector  1,..., n      and interaction matrix is stochastic i.e. We = e , 

then ˆi ip  . In this case we receive the next expression for exergy: 

     
1

ˆ ˆln
ˆ

n
i

i i i
i i

p
Ex h p p p p p

p




 
   

 
  

     It is easy to see that this expression almost coincide with formula proposed by 
Mejer and Jorgensen in 1979. Note, that in like manner we can receive all 
thermodynamic potentials such as Helmholtz or Gibbs free energy, which are 
also Lyapunov functions. We want to also point out that very similar results may 
be received for generalized Lotka-Volterra systems with nonlinear functional 
response (Pykh [12]). 

5 Conclusion 

It is seen from the examples given above that many (and practically all) known 
entropy characteristics may be obtain from entropy-like Lyapunov function. We 
also emphasize that there exists a relation between the derivative of the function 

 H p , which can be interpreted as generalized entropy, and the function  E p , 

which is often considered as an analog of the energy or fitness. This relationship 
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for entropy production was established by Pykh [9] and [8] for different 
interactions matrix and has the next form: 

      ˆ ˆ 0H h p E p E p 


  

     We mention also that all results stated above were obtained by formally 
analyzing systems of generalized replicator equations, which arise in very 
diverse fields of natural sciences and, therefore, can serve as a basis for finding 
analogies between these domains of natural sciences. Also note that it was Ilya 
Prigogine who the first pointed out [13] the importance of the relationship 
between Lyapunov functions and entropy. 

References 

[1] Bialek, W. & Ranganathan, R. Rediscovering the power of pairwise 
interactions. arXiv: 0712.4397v1 [q-bio.QM], 28 December, 2007. 

[2] Roudi, Y., Nirenberg, S., Latham, P.E. Pairwise maximum entropy models 
for studying large biological systems: when they can and when they cant’t 
work. arXiv: 0811.0903v1 [q-bio.QM], 6 November, 2008. 

[3] Ayala, F. J., Gilpin, M. E., Ehrenfeld, J.G. Competition between species: 
theoretical models and experimental tests. Theor. Pop. Biol., V.4, N.3, 
pp.331-356, 1973. 

[4] Schneidman, E., Berry II, M.J., Segev, R. & Bialek, W. Weak pairwise 
correlations imply strongly correlated network states in a neural population. 
Nature. V.440, pp. 1007-1012, 20 April, 2006.  

[5] Pykh, Yu. A. Energy Lyapunov function for generalized replicator 
equations.  Proc. of International Conference "Physics and Control," St. 
Petersburg, Russia (IFEE Publ., 2003), V. 1, pp. 271-276, 2003.  

[6] Fisher, R. A. The genetical theory of nature selection. Clarendon Press: 
Oxford, 1930. 

[7] Bomze, I. M. Evolution towards the maximum  clique, Journal of Global   
Optimization, N 10, pp. 143 – 164, 1997. 

[8] Morgan, J., Steiglitz, K. Pairwise competition and the replicator equation. 
Bulletin of Mathematical Biology, 65, pp. 1163-1172, 2003.  

[9] Hofbauer, J. & Sigmund, K. Bull. Am. Math. Soc. V.40, N 4, pp. 479-519, 
2003. 

[10] Helbing, D. A stochastic behavioral model and a ‘microscopic’ foundation 
of evolutionary game theory. Theory Decision, V. 40, N 2, pp. 149-179, 
1996. 

[11] Pykh, Yu. A. Construction of the entropy measures on the basis of 
replicator equation with nonsymmetrical interaction matrix. In Doclady 
Mathematics. V 72, N 2, pp. 780-783, 2005. 

[12] Pykh, Yu. A. Lyapunov functions for Lotka-Volterra systems: an overview 
and problems. Proc.  of 5th IFAC Symposium “Nonlinear Control 
Systems”, pp.1655-1660, 2001. 

[13] Prigogine, I. Time, structure and fluctuations. Nobel lecture, 8 December, 
1977. 

Ecosystems and Sustainable Development VII  49

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2009 WIT PressWIT Transactions on Ecology and the Environment, Vol 122,


