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Abstract 

This paper has two goals. First, to explain the sources of an energy system     
lock-in. Second, to analyse the factors for creating conditions for technological      
path-breaking. We present a comparative analysis of the respective contributions 
of the learning-by-doing, the learning-by-researching and returns to scale effects 
in explaining the technological change dynamic. Our analysis is articulated 
within the increasing returns to adoption hypothesis of Arthur (Competing 
technologies, increasing returns, and lock-in by historical events. The economic 
journal 99, pp. 116-131, 1989) and is based on the learning curve theory. Global 
time series data of nine energy technologies, conventional and renewable, were 
collected. Causality analysis and econometric estimation of learning rates and 
scale effects were performed. The results show that learning effects have been an 
important source of cost decrease and thus of learning system performance 
improvements. They also show that the magnitude of the learning effects as well 
as of the scale effects depend on the technological change stage of energy 
technologies. Based on major results, some theoretical institutional and policy 
issues inherent to the energy market barriers and to the conditions for creating 
technological path-breaking are also assessed and discussed.  
Keywords:  technological change, energy diffusion, two factor learning curve, 
returns to scale effect, energy lock-in, increasing returns to adoption. 

1 Introduction 

Environmental policy debates increasingly focus on issues related to energy 
system dynamics. For a long time, production and consumption processes have 
been based on fossil fuel resources, mainly oil and coal energy technologies, 
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which have serious harmful effects on the environment and the ecosystem 
equilibrium. Subsequently, the major challenge of the international community is 
to shift from a conventional energy-based economic system to an 
environmentally friendly-based economic system in order to avoid ecological 
system degradation. However, the environmentally friendly technologies 
correspond to a techno-economic system that is radically different from a 
conventional techno-economic system in terms of structure, density, needed 
investment and regulatory practices (Tsoutsos and Stamboulis [1]). Therefore, 
the transition process which starts with the development and then the deployment 
of renewable energy innovations, goes beyond the simple substitution of energy 
technologies’ use and basically corresponds to a change in the path and direction 
of technological change regimes. Until now, the technological transition process 
supposed to have started a few decades ago, is still uncompleted and shows some 
serious hitches related especially to the low competitiveness of the renewable 
energy technologies and to the established market structure. Indeed, the actual 
energy system is locked-in to the conventional fossil fuel resources which benefit 
from important increasing returns to adoption factors (Arthur [2]) and the 
technological regime shift to renewable energy sources exhibits large systemic 
barriers. It is, thus, of interest to enhance our understanding of factors that 
promote the technological regime transition and create favourable conditions for 
path-breaking. 
     In this paper, we use the learning curve approach to investigate these issues in 
the framework of technological change dynamics. We perform a comparative 
analysis between the conventional and the renewable energy systems in order to 
find out factors likely to explain the path-dependence observed phenomena and 
to assess conditions for technological regime transition. We are interested in nine 
learning systems: three correspond to conventional energy technologies and five 
correspond to renewable energy technologies. In addition to the learning effects, 
we pay special attention to scale effects estimation since they are shown to be 
partly responsible for the lock-in of the system. The theoretical framework of the 
analysis is addressed in Section 2. The model specification and the data 
description and source are presented in Section 3. The econometric approach and 
results discussion are given in Section 4. Section 5 gives the major policy 
directions. Finally, summary and concluding remarks are formulated in     
Section 6.    

2 Theoretical framework of the analysis 

The intensive reliance on the conventional energy sources has engendered both 
environmental degradation and resource scarcity. Therefore, the transition to a 
non-harmful and sustainable energy system based on renewable energy 
technologies appears as an urgent challenge.     
     The technological transition or shift concept refers to multilevel changes 
involved when a given sector is moved from one quasi-stable configuration 
through a number of phases and translations to another quasi-stable 
configuration (Jorgensen [3]). Despite the accepted wisdom of the advantages of 
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the renewable energy technologies and their exhibited performance, the 
transition to a sustainable energy process still faces considerable challenges due 
to the radical divergence between the knowledge bases supporting the two 
technological regimes. The major challenge is therefore to develop a new 
learning network associated with an appropriate selection environment that 
focuses on adequate technology policy definition, and is able to enhance the 
adoption and the diffusion of renewable energy technologies. Nevertheless, the 
Arthur hypothesis states that the adoption process is stressed by some increasing 
returns to adoption factors which are learning effects, economies of scale, 
network externalities, increasing returns of information and technological 
interdependencies. Once a given technology is produced and adopted for the first 
time, it acts as a self-reinforcing mechanism and brings about a new 
technological trajectory supported in the long-run by the possible development 
of a new selection environment (Arthur [2]). On the basis of the theoretical 
framework of Arthur [2] about the technological competing models and the 
increasing returns to adoption hypothesis, we aim to check if there are really 
increasing returns to adoption mechanisms that have supported the adoption of 
conventional energy resources to the detriment of renewable energy. We aim 
also to compare the strength of these self-reinforcing mechanisms between the 
two technological regimes. In our analysis the learning effects and the returns to 
scale are considered. Their estimation and their quantification are based on the 
two factor learning curve (TFLC) modelling. 

3 Learning curve modelling 

The purpose of the following section is to present the learning curve 
specification and a preliminary qualitative data description and sources. The 
derivation of the TFLC functional forms is based on the production and the 
duality theory and allow for the simultaneous estimation of learning and returns 
to scale effects. In the following, the learning effects are understood to be related 
to cumulative production and to knowledge stock accumulations issued from 
R&D expenditures and are assumed to be estimated separately from the returns 
to scale.  

3.1 Model specification 

The following description is based on Berndt [4]. To specify the functional form 
of the learning curve, which will be estimated, we start by characterizing a 
production function for energy producer using a Cobb-Douglas specification: 
 

Y A l k= ⋅
α β

   where 0 1< <α , 0 1< <β  and 0A >              (1) 
 

where Y  is the output, l  is the labour input, k  is the capital input, and A  is the 
technological change. The prices are constant. The total cost is: 
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kplpC kl +=                                              (2) 
 

where lp  is the labour price, and pk  is the capital price. The cost minimization 
program consists of minimizing the cost subject to the production function: 
 

min l kC p l p k= +  subject to  Y A l k= ⋅
α β

                   (3) 
 

     If we replace l  and k  by their expressions in the total cost expression, we 
obtain the following expression: 
 

1 1

k lC A Y ap p
−

+ ++ += ⋅ ⋅ ⋅ ⋅

β α
α β α βα β α β                          (4) 

                                                                                                                
α  and β  represent the scale effects. The main two drivers of endogenous 
technological change, represented by the A  parameter, are the learning-by-doing 
and the learning-by-researching. The R&D expenditures (public and private) 
permit one to define the knowledge stock, which will be calculated on the basis 
of the following equation: 

( )
1

1 &tt t x
KSKS R D− −

= − ⋅ +δ                                (5) 

                                                      
where 

t
KS  is the knowledge stock at time t , R&Dt  are the R&D expenditures 

at time t , δ  is the annual depreciation rate of knowledge stock and x  is time 
lag for adding R&D to the knowledge stock. The A parameter is defined as 
follows: 

A Q K S
− −

=
λ δ     where  0<λ  and 0<δ                           (6) 

                                                      
where Q  is the cumulative installed capacity and KS  is the knowledge stock 
inherent to public and private R&D investments. λ  represents the elasticity of 
the production to cumulative production and δ  the elasticity of the production to 
cumulative R&D expenditures. The two parameters λ  and δ  therefore 
represent respectively the learning-by-doing and learning-by-researching rate. If 
we substitute equation (6) in equation (4) and if we assume that the inflationary 
effect of input prices can be taken into account by GNP deflator defined as: 
 

k lp p+ +⋅

β α
α β α β  

 
we obtain the following unitary cost function: 
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( )1

c Q K S Y a
− +

+ + += ⋅ ⋅ ⋅

α βλ δ
α β α β α β                                (7) 

 
The equation that will be econometrically estimated is: 
 

( )1
log log log log

log

c Q K S Y

a

 − +   
= + +       + + +     

+ +

α βλ δ
α β α β α β

ε

 

                                                                                                                        (8)           
 

where ε  is an error term, c  is the per-unit cost, Q  is the cumulative installed 
capacity, KS  is the knowledge stock and Y  is the power generation capacity. 
The learning elasticities and the scale effects are calculated as follows: 
 

1
1

+ =
+

α β
ψ

 where 1 ( )− +
=

+
α βψ

α β
,   ( )= + ⋅λ α β µ  

where 

 =
+
λµ

α β
 and ( )= + ⋅δ α β η  where =

+
δη

α β
              (9) 

 

3.2 Data description and sources 

Global time series data of nine energy technologies were collected. They 
correspond to eleven regions in the world. Energy technologies were divided into 
two groups: conventional energy technologies and renewable energy 
technologies. These two groups are also divided into three subsamples: mature, 
evolving and emerging technologies.  The database was provided by the LEPII-
EPE (Laboratoire Economie Politique de l'Intégration Internationale et du 
Développement-Energie et Politique de l’Environnement), Grenoble, France. It 
has been assembled in the framework of the SAPIENT project (DG Research) to 
inform the world energy simulation model, POLES.  
     The time series data needed for our estimations are provided in table 1. 

Table 1:  Description of the data. 

Data Unity 
Power generation capacities MWe 
Government energy R&D M$98 
Public knowledge stock M$98 
Business energy R&D M$98 

Business knowledge stock M$98 
Energy technology cost $90/kWe 
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4 Econometric estimation and result interpretation 

The results of the econometric estimations are addressed in tables 2 and 3.  We 
have used the OLS multiple regression technique. Detection of the possible 
multicolinearity among the explanatory variables was undertaken based on the 
Klein [5] test and the correlation matrix shows that no evidence of 
multicolinearity is suggested. The homescedasticity and independence conditions 
of residuals are also checked out. For the homescedasticity condition, we based 
on the White [6] test and for the residuals autocorrelation are based on Durbin 
and Watson [7] test, Breusch [8] test and Godfrey [9] test. The results show that 
the residuals are independent and identically distributed for all regressions.  
     For the first two estimations, which correspond to coal and lignite 
conventional technologies, the returns to scale range from 1.076 to 1.326 
meaning that increasing returns to scale may have taken place at the outset of the 
development and the deployment stages. The increasing returns to scale imply 
that these technologies face less market constraints in terms of commercial and 
expansion opportunities. They are, therefore, expected to be mature technologies 
that have reached the large diffusion stage. However, despite their mainstream 
position and widespread use, these technologies have low learning-by-doing and 
learning-by-researching rates, which range respectively from 2.80% to 5.32% 
and from 1.25% to 3.08%. This is not surprising since they are situated in the last 
stage of a technological change process: the diffusion and large scale deployment 
stage. Indeed, when technology is mature a doubling of cumulative installed 
capacity can take place rather slowly and over a long period of time due to 
saturation effects meaning that the prospects of cost reduction become limited. In 
the same way, the R&D expenditures flows are the least important compared to 
flows corresponding to an energy technology in the first stage of technological 
development process and, as consequence, the knowledge stock increases 
slowly.  

Table 2:  Learning and scale effects estimation for conventional energy 
technologies. 

Index CCT LCT NUC 
1.  Y -0.246 

(-9.340)*** 
-0.071 

(-2.972)*** 
0.098 

(4.062)*** 
2.  Q -0.060 

(-3.668)*** 
-0.039 

(-2.348)** 
-0.279 

(-6.103)*** 
3.  SC -0.013 

(-4.990)*** 
-0.042 

(-2.510)** 
-0.212 

(-2.279)** 
     RS 1.326 1.076 0.910 
     LBD elasticity -0.079 -0.041 -0.254 
     LBS elasticity -0.018 -0.045 -0.193 
     LBD rate 5.32% 2.80% 16.14% 
     LBS rate 1.25% 3.08% 12.53% 
Adjusted R2 0.967 0.959 0.581 
Number of 
observations 

31 31 31 

***significant at 1%, **significant at 5%, *significant at 10%. 
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     The third non-renewable energy technology analysed, the light water nuclear 
reactors, present, in contrast, decreasing returns to scale and relatively high 
learning rates. The results are different from those obtained for the coal and 
lignite conventional energy technologies because the light water nuclear reactors 
technology is considered to be evolving rather than mature. More accurately, 
high learning rates are explained by the relatively short period of time needed for 
the doubling of cumulative installed capacity and by the increasing rate of R&D 
devoted to support the development of light water nuclear reactors. Indeed, they 
represent 86% of the functioning park and 79% of the park under consideration 
and have a large prospect for development. However, the decreasing returns to 
scale means that despite the fact that the nuclear technology benefits from the 
experience effects of doubling of cumulative installed capacities and from R&D 
flows, it still faces serious barriers to market diffusion inherent especially to 
nuclear accidents and to radioactive wastes. Compared to the renewable energy 
technologies, it does not appear as a priority in energy policy and environmental 
concerns despite its considerable participation in the provision of electricity.  
     We conclude, therefore, that differences in learning rates and returns to scale 
effects between the three energy technologies, which are classified in the 
category of non-renewable energy technologies, are mainly due to the 
differences in their technological change stage. Other technology properties, like 
the environmental or the economic characteristics can largely influence the 
diffusion rate of energy technologies. 

Table 3:  Learning and scale effects estimation for renewable energy 
technologies. 

***significant at 1%, **significant at 5%, *significant at 10%. 
 
     The estimation results of renewable energy technologies group are presented 
in table 3. The wind energy technology, which is an evolving technology, 
presents almost the same scheme evolution as the light water nuclear reactors 

Index WND BF2 DPV RPV SPP HYD 
1.  Y 0.068 

(5.752)*** 
-0.879 

(-1.709) 
0.148 

(2.461)*
* 

0.157 
(2.536)*

* 

0.391 
(-2.893)** 

-0.036 
(-2.571)** 

2.  Q -0.332 
(-7.605)*** 

-1.381 
(-0.908) 

-0.075 
(-

1.735)* 

-0.079 
(-

2.284)*
* 

0.317 
(5.587)** 

-0.061 
(-

10.115)**
* 

3.  SC -0.278 
(-8.119)*** 

-0.718 
(-1.440) 

-0.063 
(-

4.592)*
** 

-0.067 
(-

3.495)*
** 

-0.085 
(-2.496)** 

-0.014 
(-

17.545)**
* 

     RS 0.936 -- 0.871 0.864 0.718 1.037 
     LBD 
elasticity 

-0.311 -- -0.065 -0.068 -- -0.064 

     LBS elasticity -0.260 -- -0.054 -0.057 -0.061 -0.014 
     LBD rate 19.41% -- 4.40% 4.62% -- 4.35% 
     LBS rate 16.52% -- 3.67% 3.87% 4.14% 1% 
Adjusted R2 0.985 0.326 0.976 0.974 0.681 0.993 
Observations 31 12 31 21 16 31 
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technology. The learning-by-doing and the learning-by-researching levels are 
high and respectively equal to 19.41% and 16.52%. However, despite the 
considerable growth trend of cumulative installed capacity associated with the 
continuous knowledge stock increase and considerable subsequent cost decrease, 
the wind energy technology still faces important and several market barriers in 
reaching a significant share of electricity resource mix. Indeed, estimated returns 
to scale are equal to 0.936, which implies that this technology is subject to 
diseconomies of scale related especially to the lack of full cost competitiveness 
and to the reliance on public subsidies. Therefore, wind energy technology needs 
more specific technology policies to go up beyond the early beginning stage of 
technological change and to reach the maturity stage like, for instance, large 
hydropower energy technology. The latter represents one of the oldest renewable 
energy technology developed and utilised over a long period and has a major role 
in the electricity sector. It has accomplished large-scale deployment schemes and 
it is considered, therefore, a mature energy technology. This is ensured by scale 
effects estimation, which shows that large hydropower technology has benefited 
from economies of scale. On the other hand, estimations show a low level of 
learning effects meaning that the technology continues to evolve but at a slower 
rate. In general, hydropower energy technology exhibits the same characteristics 
as coal and lignite energy technologies.  
     The decentralized and the rural photovoltaic energy technologies, which are 
both emerging technologies, have existed for a relatively short time and have 
achieved a lower degree of technological change progress during the period 
under consideration. This is why they have decreasing returns to scale and low 
learning rates: returns to scale range from 0.864 to 0.871 and the learning-by-
doing and learning-by-researching range respectively from 4.40% to 4.62% and 
from 3.67% to 3.87%. As in the precedent cases, decreasing returns to scale 
means that technologies under consideration face barriers to diffusion greatly 
caused by their high investment costs and their low competitiveness potential. 
The low level of learning rates is interpreted as a lack of cost responsiveness to 
capacity expansion and also to R&D efforts. As a result of market barriers and 
low cost competitiveness, the technological change dynamic of emerging 
technologies has been slow and they are yet to gain a noticeable share of energy 
mix. 
     The solar thermal power plant technology, which is also an emerging energy 
technology, presents almost the same schemes as the decentralized and rural 
photovoltaic energy technologies: decreasing returns to scale effects and low 
learning-by-researching rate. Nevertheless, the learning-by-doing rate is not 
calculated because of the problem of wrong sign, which is current in the 
literature estimating learning curve. The electricity production from waste 
estimation results cannot be interpreted because the coefficients are not 
significant. 
     In sum, results of our estimations show that the main explicative factors of the 
differences in learning rates and returns to scale effects between the several 
considered energy technologies is their technological change stage characteristic: 
mature, evolving or emerging. Mature and emerging technologies present both 
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low learning effects, but the former has increasing returns to scale due to its large 
scale adoption and the latter has decreasing ones because of barriers to market-
based diffusion. The evolving technologies are situated in an intermediate 
situation between the mature and the emerging technologies and show a 
relatively high estimated level of learning rates, which means that they respond 
positively to diffusion promotion policy and that they have important 
opportunities of adoption.  
     With regard to the Arthur hypothesis, when we compare the path diffusion of 
the conventional energy technologies to renewable energy technologies, we can 
argue that the observed lock-in and path-dependence situation on the 
conventional fuel resources is justified by the presence of increasing returns to 
adoption factors mainly in the form of economies of scale which act as self-
reinforcing mechanisms and prevent the technological regime shift. The 
relationship is, thus, significant between increasing returns to adoption factors 
and the adoption decision. The renewable energy technologies seem to be unable 
to compete with the established energy system as long as the learning process is 
not achieved and conditions for technological path-breaking are not conceived.  

5 Major policy directions 

To overcome the several barriers to entry (technological, economic, societal and 
behavioural and regulatory), the transition process of renewable energy 
technologies should be boosted from the emergence stage to its self-sustaining 
growth path on the basis of both technology-push and demand-pull measures. 
These two complementary measures permit to enhance the learning system 
performance. The aim of technology-push measures is to overcome such barriers 
and to promote generation of the knowledge flows and development of 
technologies which are in the early stage of technological change process, 
whereas the aim of the demand-pull measures is to promote technical change by 
creating demand and developing markets for new innovative technologies and 
products. The combination of the two technology policy measures permits to 
overcome the supply and demand market barriers to entry, but the challenge still 
is to put policies in place and to ensure their synergy effects.  At the basic stage, 
the technology push measures, like the government R&D as well as the financial 
support schemes (subsidies, tax credit…), are initially more important. As the 
energy technologies mature, policies supporting demand-pull will gradually be 
more effective in promoting technological progress. The compatibility between 
technological policies and the technological progress stage of the technology is 
hence crucial.  
     In this context, technology policies supporting the transition process should 
rely on three policy directions. First, the development of focused micro and 
macro learning mechanisms. Second, the encouragement of new types of players 
and third the definition of flexible financing mechanisms, adapted to the 
characteristics of individual applications and environmentally consistent 
economic evaluation. Kamp [10] and Weber & Dorda [11] propose a new 
penetration–promotion approach based on these three directions for the transition 
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to a new technological regime called the strategic niche management approach. It 
is mainly based on the creation of protected spaces for the development and use 
of new technologies to conceive conditions for interactive learning that may 
extend beyond the individual technologies. Weber & Dorda [11] stress that the 
niche market approach contributes to the articulation of radical innovations, 
which may affect the structure of the conventional system and enhance the 
market diffusion process of the renewable energy by putting together the 
technological development with the institutional and organizational change, 
which are necessary for the success of technology. The market niche strategy 
provides an integrated approach, which merges the technology-push measures 
with the demand-pull in a unique evolving system.  

6 Summary and concluding remarks    

The paper has two goals: to explain the sources of energy system lock-in and to 
analyse the factors for creating conditions for path-breaking. The results show 
that learning effects have been an important factor for cost decrease and thus for 
learning system performance improvements. They also show that the renewable 
energy technologies analysed present a potentially important prospect of 
diffusion, but require initial support from the technological policies before taking 
full economic and environmental advantages of the technological change regime 
shift. 
     At the end of this paper, it is important, however, to note that from a 
methodological point of view some remarks are suggested. Indeed, technology 
learning rates are often based on econometric estimations of relatively short time 
series data where all series exhibit strong trends. This can engender several 
problems that seriously affect the quality of estimations. First, it is possible that 
some estimated elasticities could be statistically insignificant or even have an 
unintuitive sign (Cory et al. [12]). Second, the results of regressions could be 
spurious and the R-squares could overestimate the relationship between the 
endogenous and the exogenous variables. Moreover, despite its contribution in 
enhancing our understanding of the technological change dynamic in energy 
sector, the TFLC specification is still limited especially when trying to model 
some special effects as endogeneity effects between the cumulative installed 
capacity and the unit cost. The extension of the TFLC functional form should 
help to take account of these observed phenomena. Refining the data and the 
methodology permits to avoid econometric problems and strongly contributes to 
enhance our understanding of the energy technologies dynamic.  

References 

[1] Tsoutsos, T. & Stamboulis, Y., The sustainable diffusion of renewable 
energy technologies as an example of an innovation-focused policy. 
Technovation 25, pp. 753-761, 2005.   

[2] Arthur, B., Competing technologies, increasing returns, and lock-in by 
historical events. The economic journal 99, pp. 116-131, 1989. 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2007 WIT PressWIT Transactions on Ecology and the Environment, Vol 106,

236  Ecosystems and Sustainable Development VI



[3] Jorgensen, U., Energy sector in transition: technologies and regulatory 
policies in flux. Technological forecasting and social change 72, pp. 719-
731, 2005.  

[4] Berndt, E., The practice of econometrics: classical and contemporary. 
Addison-Wesley Publishing, Boston, MA, 1996. 

[5] Klein, L., An introduction to econometrics. Prentice Hall, 1962.  
[6] White, H., A heteroscedasticity-consistent covariance estimator and a 

direct test for heteroscedasticity. Econometrica 48(4), pp. 817-838, 1980. 
[7] Durbin, J. & Watson, G. S., Testing for serial correlation in last squares 

regression. Biometrika 38, pp. 201-223, 1951. 
[8] Breusch, T., Testing for autocorrelation in dynamic linear models. 

Australian economic paper 17, pp. 334-356, 1978.  
[9] Godfrey, L. G., Testing fir higher order serial correlation in regression 

equation when the regressor contain lagged dependant variables. 
Econometrica 46(6), pp. 1303-1310, 1978. 

[10] Kamp, L., Learning in wind turbine development. A comparison between 
the Netherlands and Denmark. Doctorate thesis, Utrecht University, 2002.   

[11] Weber, M. & Dorda, A., Strategic niche management: a tool for the 
market introduction of new transport concepts and technologies. IPTS 
Report, 1998. 

[12] Cory, K., Bernow, S., Dougherty, W., Kartha, S. & Williams, E., Analysis 
of wind turbine cost reductions: the role of research and development and 
cumulative production. AWEA's WINDPOWER conference, Burlington, 
VT, June 22, 1999. 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2007 WIT PressWIT Transactions on Ecology and the Environment, Vol 106,

Ecosystems and Sustainable Development VI  237


