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Abstract 

It is considered that the shapes of plant leaves are optimized under various 
environmental constraints. In this paper, the optimality of a leaf shape is 
examined by using a numerical shape optimization method. For leaves, it is 
necessary to have a sufficient surface area for receiving sunlight while also being 
stiff enough to maintain their shapes against external loads such as gravity and 
winds. This study focuses on an evergreen leaf with a V-shaped cross-section 
and a thick blade for designing the optimal shape of an artificial leaf. Stiffness, 
amount of sunlight received and volume are used as the response functions to 
evaluate leaf performance. A node-based non-parametric method with pyramid-
shaped basis vectors is used as the shape optimization method. The trade-off 
problem between the amount of sunlight received and stiffness is solved with 
this method. Prior to leaf shape optimization, calculated examples in engineering 
structural design are presented to verify the effectiveness of this method. The 
leaf shape optimization results show that the optimal V-shaped cross-sections 
were obtained according to the sunlight direction and target stiffness. 
Keywords: artificial leaf, shape optimization, pyramid-shaped basis vector, 
stiffness, sunlight, V-shaped cross section. 

1 Introduction 

Plants have evolved by adapting to environmental stimuli. The shapes and 
functions of their roots, stems, branches, leaves and other organs have been 
determined in the process. Many researchers have been interested in this adaptive 
growth, and have gained numerous insights into plant shapes [1–6]. In this work, 
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we focused on the leaf shape and examined the optimal shape of the leaf blade 
for designing artificial leaves. Figure 1 shows a sketch of a plant leaf. The leaf 
consists of a petiole and a blade with main and lateral veins. The thin net-like 
veins running in the blade serve to transport nutrients. From a structural point of 
view, the leaf is a cantilever beam under a downward distributed load. The 
petiole connects the blade to the stem, which has high bending rigidity for 
supporting the blade against gravity and low torsional rigidity for twisting to 
reduce wind drag on the blade. The relations between the cross-sectional shape 
and various properties of the petiole are investigated in reference [7]. The blade 
has an organ that photosynthesizes organic compounds in response to light. The 
best shape for receiving the most light is one where the leaf blade is extended 
perpendicular to the direction of the sunlight. Leaves require sufficient stiffness 
and strength to keep their form exposed to the sun despite the effects of gravity 
and winds. A trade-off exists here. Figure 2 shows photos of a summer green leaf 
(elm) and an evergreen leaf (camellia). The blades of summer green plants are 
generally thin and have thick veins. In contrast, evergreen leaves are thick and 
have V-shaped cross-sections. Figure 3 shows a typical V-shaped leaf of a 
rubber tree. 
 

 
Figure 1: Sketch of a leaf. 

 

 

Figure 2: Photos of a summer green leaf (left), an evergreen leaf (right). 

     In this work, we focus on an evergreen leaf for designing the optimal shape of 
an artificial leaf, not for designing the topology of the veins. Stiffness, amount of 
sunlight received and volume are used as the response functions, and a simplified 
model of the leaf discretized by bar and shell elements is used for evaluation by 
finite element analysis. In the field of mechanical or structural engineering, 
 

 

Petiole 

Stem 

Lateral vein 

Main vein 
Blade 

158  Design and Nature VI

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 160, © 201  WIT Press2



 

Figure 3: Photo of typical V-shaped rubber leaf. 

numerical shape optimization techniques are often used to design optimal shapes. 
In this work, we applied a shape optimization method to the leaf blade in order to 
find its optimal shape and to solve the trade-off problem mentioned above. A 
node-based method with pyramid-shaped basis vectors is used, which yields the 
optimal shape without any shape parameterization. 
     The method is described in the following section along with calculated 
examples of basic engineering structural design problems. After that, the method 
is applied to leaf shape optimization problems. 

2 Shape optimization method 

2.1 Optimization problem 

A general optimization problem can be mathematically formulated as follows: 
 

 Minimize   ( )f x  (1) 
 

 subject to   ˆ( ) ,    1, ,i ig g i M£ = x  (2) 
 

 
,    1, ,L U

j j jx x x j N£ £ =  , (3) 
 

where f(x) is the objective function. ( )ig x  and ˆ ig  are the ith behavioral 

constraint function and its constraint value, respectively. jx , L
jx  and U

jx  are the 

jth design variable and its lower and upper side constraints, respectively. M and 
N are the total numbers of the constraints and the design variables. jx , f(x) and 

( )ig x  for leaf shape optimization are explained in the following section. 

     This optimization problem can be solved by using a mathematical 
programming. The feasible direction method was used in this work. 

2.2 Pyramid-shaped basis vector method 

In a shape optimization problem, shape parameterization is generally needed and 
is an important process for defining shape perturbations, but it requires 
considerable experience. The obtained optimal shape is strongly influenced by 
parameterization. The basis vector method, one of the shape optimization 
methods, is used in this work. Shape updating in the basis vector method is 
defined as a linear combination of pre-defined basis vectors of shape 
perturbations as follows: 
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where ( )G x is the vector of nodal coordinates, 0G  is the vector coordinates of 

the initial shape, iT  is the ith basis vectors (grid perturbation vector), and K is 

the total number of shape design variables ix . 

     In order to avoid the difficulties inherent in parameterization, a general basis 
vector method with global basis vectors as shown in Fig. 4 is first modified. This 
is done by using node-based or node-by-node pyramid-shaped basis vectors like 
the shape functions in the finite element method (FEM) to define the shape 
variations as shown in Fig. 5(a). Pyramid-shaped basis vectors with unit  
magnitude are set for all nodes in the normal direction to the surface. Figure 5(b) 
shows other pyramid-shaped basis vectors with grouped elements, which is 
based on the concept of the design element method [8] to avoid the problem of 
jagged boundaries. 

 

 
Figure 4: Example of global basis vectors. 

 
Figure 5: Examples of pyramid-shaped basis vectors. 
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2.3 Sensitivity analysis 

Since the optimization algorithm uses gradient information to determine the 
search direction, it is necessary to calculate the derivatives of the response 
functions, i.e., objective and constraint functions. Discrete sensitivity is 
calculated by FEM. In the pyramid-shaped basis vector method, the number of 
design variables is much larger than the number of response functions, so the 
adjoint method is more efficient than the direct method [9]. 
     In the adjoint method, the derivative of the stiffness matrix K with respect to 
the design variables ix  is needed. A semi-analytical method is used to evaluate it 

directly by using central finite differences as follows: 
 

 

( ) ( )

2
i i i i

i i

x x x x

x x

¶ +D -¶ -D¶
=

¶ D
K KK

. (5) 

2.4 Calculated examples of structural designs 

In order to verify the effectiveness of the shape optimization method with node-
based pyramid-shaped basis vectors, two calculated examples of engineering 
structural designs are presented. Node-based vectors were fixed through the 
optimization process in all calculations. 

2.4.1 Plate under torsion 
A simple stiffness design problem of a square plate under torsion was solved in 
one example. After defining the initial, side constraint and move limit values of 
the design variables, the compliance was minimized subject to a volume 
constraint. The initial shape and the boundary condition for this problem are 
shown in Fig. 6 (a) . The area constraint value was defined as 105% of the initial 
shape. Figure 6 (b) shows the optimal shape obtained. The result shows that an 
ideal X-type bead was created for stiffening the plate. The compliance was 
minimized by about 96% of the initial shape, while satisfying the volume 
constraint.  
 

 

Figure 6: Optimization example in structural design (plate under torsion). 

     A roof under a snow load, i.e., a downward distributed force, was optimized 
in the second example. The initial shape and the boundary condition for this 
problem are shown in Fig. 7(a). After defining the initial and side constraints of  
 

(a) Initial shape under torsion (b) Obtained shape 
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Figure 7: Optimization example in structural design (roof under snow load 

with multi-constraints). 

the design variables, the volume was minimized subject to four behavioural 
constraints, i.e., buckling load ( 4 times the initial)³ , compliance 

( 20% of  the initial£ ), max. von Mises stress ( 40% of the initial£ ) and the 
first natural frequency ( 1.5 times the initial³ ). Figure 7(b) shows the optimal 
shape obtained. The result shows that several beads were created along the 
circumferential direction. Iteration convergence histories of the response 
functions are shown in Fig. 8. The values were normalized to those of the initial 
shape. The volume was increased by 6% over the initial shape because of the 
strict constraints, while satisfying the given constraints. Figure 9 shows the shape 
convergence histories from the initial shape (a) to the final shape (h). 
 

 
Figure 8: Iteration histories in roof optimization example. 
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Figure 9: Shape histories in roof optimization example.  

3 Shape optimization of artificial leaf 

3.1 Evaluation functions 

Stiffness, volume and amount of sunlight received were defined as the response 
functions for evaluating the performance of the leaf. 

3.1.1 Amount of sunlight received 
Figure 10 shows the notations for the amount of sunlight received. The sunlight 
vector L


 is defined using spherical coordinates as  

  sin cos , sin sin , cosL r r r    


 , (6) 

 

 

Figure 10: Definition of sunlight vector L. 
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where q  and j are the polar and the azimuth angle, respectively, r is the radius, 

n


 is a unit normal vector to the top surface of the leaf, and a  is the angle 

between n


 and L


. The total amount of sunlight received Q on the top surface of 
the leaf can then be evaluated using the following equation. It is assumed that 
only direct light falling on the top surface is considered, and scattered light is 
ignored, for the sake of simplicity.  
 

 
cos

A
Q dA  , (7) 

 
where A is the blade area. 

3.1.2 Stiffness 
Stiffness is an important property for maintaining the form of leaves against the 
effects of gravity and winds. In the shape optimization method mentioned above, 
the compliance which is the inverse of stiffness is actually used. The compliance 
C is defined as follows:  

 A
C uPdA=ò , (8) 

where u and P are the downward displacement and the distributed self-weight 
force per unit area, respectively. The compliance is evaluated by using the finite 
element model and the boundary condition shown in Fig. 11. A blade having a 
maximum length of 85 mm, a maximum width 48 mm, and a constant thickness 
of 0.2 mm is discretized by using shell elements. The main vein and the petiole 
are discretized by bar elements, but the lateral veins are not modelled in this 
model because an evergreen leaf with a thick blade is considered here. The edge 
of the petiole is clamped and the downward distributed forces for self-weight are 
applied to the blade.  
 

 

Figure 11: Finite element model and boundary condition for leaf shape 
optimization. 

3.1.3 Volume 
Assuming that the blade thickness and the cross-sectional area of the main vein 
are constant, the total volume of the leaf is defined as follows: 
 

 A l
V dA dl   , (9) 

 

where l is the total length of the main vein and the petiole. 
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4 Calculated results 

The pyramid-shaped basis vectors iT  in Eq. (4) are defined for all the nodes of 

the blade (shell elements) and the main vein and the petiole (bar elements) in the 
normal direction to the initial blade surface in order to obtain or design the 
optimal free-form of the leaf. The shape optimization method with node-based 
pyramid-shaped basis vectors is applied to leaf optimization problems involving 
different combinations of objective and constraint conditions as explained below, 
and the design variables xi in Eq. (4) are determined. The pyramid-shaped basis 
vectors are fixed through the optimization process. 

4.1 Maximization of stiffness (problem 1) 

First, a stiffness design problem was solved. The compliance defined by Eq. (8) 
was used as the objective function. A volume constraint was applied and set as 
1.05 times the initial value. Side constraints were set as 35 35ix    on the 

blade, and 10 10ix    on the main vein, and the all initial values were set as 

zero. Figure 12 shows the shape convergence histories from the initial shape (a) 
to the final shape (f). The initial flat shape is changed to the final shape with a V-
shaped cross-section for efficiently stiffening the blade, as was expected. 
Iteration convergence histories of the compliance and the volume are shown in 
Fig. 13. The values were normalized to those of the initial shape. The 
 

 

Figure 12: Shape histories of leaf shape optimization (problem 1). 

 
Figure 13: Iteration histories of leaf shape optimization (problem 1). 
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compliance was reduced by approximately 62% while satisfying the given 
volume constraint. A frontal view of the optimal shape obtained is shown in 
Fig. 14, where the opening angle gradually shrinks from the tip according to the 
position along the main vein , i.e. 1 2 3    , as was expected. 

 

 

Figure 14: V-shaped angles of final shape. 

4.2 Maximization of amount of sunlight received (problem 2)  

The amount of sunlight received defined by Eq. (7) was maximized. The 
compliance and the volume constraint were set as less than 35% and 100% of the 
initial shape, respectively. The sunlight vector in Fig. 16 was defined as 45q =   

and 0j=  . The other conditions were the same as in problem 1. Figure 16 

shows the optimal shape obtained. The result shows that the optimal blade shape 
with a V-shaped cross-section is tilted toward the sunlight direction to maximize 
the amount of sunlight received. Iteration convergence histories are shown in 
Fig. 17. The values were normalized to those of the initial shape. The amount of 
sunlight received was increased by 23% over the initial value, while satisfying 
the given volume and compliance constraints.  
 
 

 

Figure 15: Leaf shape optimization problem 2 (φ=0°, θ=45°). 

x
y

z





1

2
3

166  Design and Nature VI

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 160, © 201  WIT Press2



 

Figure 16: Obtained leaf shape (problem 2). 

 

Figure 17: Iteration histories of leaf shape optimization (problem 2). 

4.3 Maximization of stiffness (problem 3)  

The compliance was minimized subject to the sunlight reception constraint. The 
constraint value was set to the same value as that of the initial shape. The 
sunlight vector was defined as θ=45° and φ=0°. The other conditions were the 
same as in problem 1. The optimal shape obtained and the iteration convergence 
histories are shown in Figs. 18 and 19, respectively. The result shows that the 
optimal blade has a different tilt from that in problem 2, and that the V-shaped 
angle was noticeably enlarged near the petiole to satisfy the trade-off between 
the amount of sunlight received and stiffness. The compliance was minimized by 
63% of the initial shape, while satisfying the constant sunlight constraint.  

 
Figure 18: Obtained leaf shape (problem 3). 
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Figure 19: Iteration histories of leaf shape optimization (problem 3). 

5 Conclusion 

A numerical shape optimization method with pyramid-shaped basis vectors was 
applied to an evergreen leaf model. It was confirmed that the optimal leaf shape 
was obtained with this method, while satisfying the given constraint conditions. 
The obtained optimal shape has the following features as was expected: (1) it has 
a V-shaped cross-section to efficiently stiffen the blade, (2) the V-shaped angle 
is enlarged along the main vein to the petiole, and (3) the optimal shape is tilted 
toward the sunlight direction according to the defined polar and azimuth angles 
in order to receive more sunlight.  
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