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Abstract 

This paper suggests that the golden ratio, prominent in nature and art, has also its 
presence in fluid dynamics. The first example draws from the investigation of the 
resonance in wind tunnels with ventilated walls. Using acoustic wave theory, the 
reciprocal golden ratio is shown to determine the critical Mach number below 
which refraction is possible and above which total reflection takes place. The 
second example concerns the vortex merger, such as observed in aircraft 
turbulence and large-scale atmospheric or oceanic flows. Based on a numerical 
simulation and available experimental data, a conjecture is made that the distance 
below which two identical Rankine vortices merge and above which they do not 
is the product of the vortex diameter and golden ratio. 
Keywords: golden ratio, wind tunnel resonance, vortex merger. 

1 Introduction 

The ratio 

b
a

=Φ  ,         0>> ba  

is termed “golden” if 

a
ba

b
a +
=  , 

implying that the ratio between the greater part, a , and the smaller part, b , is 
equal to the ratio between the whole, ba + , and the greater part, a . Combining 
the above equations yields 

11 −Φ+=Φ ,                                                         (1) 
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which has the positive root  
…618.12/)15( =+=Φ                                    (2) 

     The golden ratio (or section) relates to the Fibonacci sequence in terms of the 
limit  
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and has the continued fraction expansion 
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     In view of these and other appealing algebraic properties [1], the golden ratio 
can be found in biology, architecture, pictorial arts, music, fig. 1. Claimed to 
provide the ‘divine’ proportions, it reflects the sense of a harmonious or pleasing 
ideal. In fluid dynamics the presence of Φ  is less conspicuous, typically 
disguised in defining the boundaries between different flow patterns.  
 

 

Figure 1: Golden ratio and Fibonacci numbers in art and life. 

     The first example discussed in this paper is based on the study of the 
resonance frequencies in ventilated-wall wind tunnels by Mabey [2]. Using 
experimental observations and acoustic ray theory, he found that the form of the 
solution changes across a ‘special’ Mach number, 618.02/)15( ≈−=M . 
This unexpected subsonic flow divide is more readily accepted once we realize it 
is 1−Φ , cf. eqns. (1) and (2). 
     Reasoning that the golden ratio plays a more general role in resonance 
phenomena and the dynamics of nonlinear systems, Schewe [3] independently 
searched for its presence in the vortices shed by a cylinder in the highly sensitive 
Reynolds number range of 3–4×105. From his experimental results it appears that 
the ratio of Strouhal numbers (based on the vortex shedding frequency) 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2008 WIT PressWIT Transactions on Ecology and the Environment, Vol 114,

120  Design and Nature IV



belonging to the consecutive stable states of the Kármán vortex street was nearly 
constant, equal toΦ . The author is again obliged to D.G. Mabey [4] for drawing 
his attention to this resource; unfortunately is not able to offer any new insight 
based on his own work.  
     The second part of the paper deals with the symmetric vortex merger, the 
prototype problem for the merger of like-signed vorticity, such as observed in 
aircraft turbulence, ocean eddies, and hurricanes. The determination of the 
critical distance below which two identical Rankine vortices merge and above 
which they do not is considered analytically intractable. However, based on the 
available experimental data, a conjecture is made that the ratio of the critical 
distance and the diameter of the vortices is equal toΦ . 

2 Wind tunnel resonance 

Wind tunnels resonance has been observed [5] at frequencies of the oscillating 
model such that the disturbances emanating from the oscillating model reflect 
from the walls to form a standing wave pattern. If the pressure node is at the 
model position, the amplitude of the normal force is eliminated or substantially 
reduced. It has also been found that the resonance frequencies in wind tunnels 
with open-jet boundaries or ventilated walls (slotted or perforated) differ from 
those in wind tunnels with solid walls [2,6].      
     To exemplify the physics involved, consider the propagation of acoustic 
waves at an infinite interface between the moving air (test section) and still air 
(plenum chamber), fig.2. Inside the test section, the disturbance velocity 
potential ϕ  satisfies 
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where U is the tunnel stream velocity and c  the velocity of sound. In the 
plenum,ϕ  satisfies 
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where the velocity of sound c~ is generally different from that in the test section. 
     For the incident and reflected plane waves, eqn. (5) has the solutions [7,8] 

{ }]cossin)[(exp ctyUtxikI +−−= θθϕ                           (7) 
and 

{ }]cossin)[(exp ctyUtxikRR ++−= θθϕ  ,                  (8) 

where k is the wave number, θ is the angle of incidence and R is the (relative) 
reflection coefficient. The transmitted potential, derived from eqn.(6) , is 

{ }]~~~[~exp tcbyaxkiTT +−=ϕ  ,                                   (9) 
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Figure 2: Reflection and refraction of waves at a plane interface. 

where k~ is the wave number in the plenum and T is the (relative) transmission 

coefficient. The exponential factors a~ and b~  in eqn.(9), similarly to θsin and 
θcos in eqns. (7) and (8), satisfy 

1~~ 22 =+ ba .                                                (10) 
     From Rayleigh’s conditions  

a
cUc
~
~

sin
=−

θ
                                                (11) 

akk ~~sin =θ .                                                (12) 
of equal phase velocities and equal wave number components along the interface 

0=y , we verify that the plane wave solutions (7)-(9) have the common angular 
frequency  

ckUck ~~)sin( =−= θω                                      (13) 
and that 
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−

=  .                                         (14) 

     The standing wave pattern is possible if the angle of incidence satisfies 

M
c
U

==θsin                                                 (15) 

where 10 << M is the stream Mach number. Substituting eqn.(15) in (14) and 
assuming cc =~ , we obtain 

21
~

M
Ma
−

=   .                                            (16) 

     The condition 1~ <a  is synonymous with 
12/)15( −Φ=−<M                                    (17) 
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     In this case 

θ~sin~ =a        and        θ~cos~1~ 2 =−= ab  ,                 (18) 

where θ~ denotes the angle of refraction. Accordingly, eqn.(9) describes a plane 
wave transmitted into the plenum and eqn.(11) expresses Snell’s law. If 

1−Φ>M , the angle of refraction is imaginary and total reflection takes place. 
This, however, does not imply that the interface acts like a solid wall: because of 
phase changes, the situation is more complex than that. 
 

 

Figure 3: Angles of incidence and refraction at resonance [10]. 

     For the solid interface (closed wall)  
1=R       and     0=T                                          (19) 

on the entire range of subsonic Mach numbers. For the open-jet interface, as 
derived by Miles [7], 

ba
baR ~~22sin

~~22sin
+
−
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      and       
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aT ~~22sin
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+
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θ

θ
               (20) 

     Using eqns. (10) and (15)–(16), the modulus and phase of the reflection 
coefficient are evaluated and plotted in fig.4 as functions of the Mach number. 
The abscissa 1−Φ=M  is in both graphs indicated by the vertical dotted line. 
The modulus || R  vanishes at 0=M  and 564.0sin ≈== BBMM θ , 

where Bθ  is Brewster’s angle.  Putting 0|| =R  and Bθθ =  it follows from 

eqns. (18) and (20) that 2/~ πθθ =+ BB , confirming that the reflected and 
transmitted waves are perpendicular to each other, in analogy to electromagnetic 
waves [9]. On the interval BMM <<0  the reflection coefficient is negative 
( π=Rarg ) and small ( 075.0||max ≈R ), indicating that resonance is 

insignificant. On the interval 1−Φ<< MM B  the reflection coefficient is 
positive ( 0arg =R ) and of a rapidly increasing magnitude, 1|| →R  as 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2008 WIT PressWIT Transactions on Ecology and the Environment, Vol 114,

Design and Nature IV  123



1−Φ→M . Interestingly, resonance of the ‘closed-wall type’ at 1−Φ=M  is 
common to all types of ventilated walls [2]. As shown in fig.4, in the upper 
subsonic interval  11 <<Φ− M  the modulus is at its maximum, 1|| =R , 
while Rarg  grows monotonically from 0  to π .      
     From eqns. (13) in (15) 

k
M
M

U

21−
=

ω
 

and, assuming the pressure node at the model position, the (reduced) resonance 
frequencies are found to be [10] 

hM
MRnk

M
M

U n
n

22 1]arg)12[(1 −
+−=

−
= πω

, …,2,1=n     (21) 

where n  is the resonance mode and h  is the distance of the walls between 
which the standing wave pattern occurs. For the solid walls, in accordance with 
eqn. (19), 0arg =R . For open-jet boundaries, Rarg  varies as indicated in 
fig. 4b. If 1|| =R , resonance is pure, else it is partial. 
 

 
                           a)  modulus                                                 b) phase 

Figure 4: Reflection coefficient for an open-jet interface. 

3 Vortex merger 

An important fluid-dynamics phenomenon where the golden ratio is suspected to 
play a role is the merger of two equal-size vortices of the same orientation. It is 
the prototype of the vortex merger observed in aircraft turbulence and large-scale 
atmospheric or oceanic flows. Hurricanes (or cyclones) sometimes pair in such 
way, fig.5, and are known to orbit about the mutual centre of vorticity 
(Fujiwhara effect).  However, unlike the ocean eddies, they seldom merge.  This, 
presumably (and fortunately), is due to their relatively short lives and large 
separation distances with respect to their sizes.  
     There has been a great deal of research devoted to vortex merger in two-
dimensional flow, with particular emphasis on the case of two identical vortices 
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(symmetric merger).  The interaction of two identical Rankine vortices (which 
have cores of uniform vorticity), simulated by the advection of thin, concentric 
vortex sheets [11] is shown in fig.6. However, the determination of the critical 
separation distance, below which the merger takes place and above which it does 
not, has proven difficult computationally and intractable analytically [12]. From 
the numerical simulation in fig.6 it appears that the merger does not come about 
until the vortex patches, subjected to mutual strain, become sufficiently distorted 
to initialize a localized roll-up.  
 

 

Figure 5: Cyclones Ione (left) and Kirsten (right), 1974. (NOAA Photo 
Library). 

     Since from the initial conditions it is not readily apparent whether merger will 
take place or not, the key to solving this problem is the limit as the number of 
vortex orbits tends to infinity. Unfortunately, this may not be an easy path to 
follow because, due to the conservation laws, the efficiency [13] of the merger 
decreases near the critical distance. This is illustrated in the left-hand picture 
sequence of fig. 6, where the combined vortex is surrounded by a sea of 
filamentary debris.  
     According to the veritable experimental results by Griffiths and Hopfinger 
[14], the critical distance scaled by the radius of the vortex core is 

2.03.3/* ±=rD . Putting ** 2RD = , where *R is the critical orbit radius, 
Φ=rR /*  immediately becomes the prime candidate. In support of this 

conjecture we recall the Pythagorean construction of the golden ratio. In the 
context of two circular vortices, fig.7, we confirm that the geometrical 
determination of *R is as simple as can be expected for this fundamental  
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                      a)  merger                         b) non-merger 

Figure 6: Interaction of circular vortex patches simulated numerically [11]. 
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configuration (requiring a straight edge and a pair of compasses only). From the 
algebraic point of view, Φ is known to have the slowest-converging continued 
fraction representation, eqn.(4), of all irrational numbers [15]. There may be a 
connection between an infinitely slow convergence and the infinite number of 
vortex orbits at the critical distance. However, proving it is a different matter. 
 

 

Figure 7: Geometrical construction of the critical orbit radius for two 
identical Rankine vortices. 

4 Discussion 

From the preceding analyses it appears that the golden ratio in fluid dynamics 
does not have the same impact as in biology (Fibonacci-sequence growth) or in 
architecture and pictorial arts (ideal proportions). On can argue that the 
introduction of Φ in fluid dynamics is pretentious because, unlike π  or e , this 

irrational number is easily bypassed by its constituent )12(5 −Φ= . We 
have therefore narrowed our focus to cases where it appears without additive 
constants: 1−Φ  in Mabey’s tunnel resonance case and Φ  both in Schewe’s 
vortex shedding (not analyzed in detail) and the symmetric vortex merger. In all 
instances the identification of the golden ratio is based on experimental 
observations. The tunnel resonance result is further supported by acoustic wave 
theory. For the symmetric vortex merger it is merely a conjecture that, in any 
case, seems to provide a reasonable estimate of the critical distance normalized 
by the vortex diameter.  
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