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Abstract 

A generalised version of Murray’s law has been derived for the design of 
microfluidic manifolds and hierarchical fluid distribution systems. Murray’s law 
was original obtained from a study of mammalian cardiovascular systems and 
describes the optimum conditions governing the ratio of diameters of the vessels 
in a branching vascular network. The optimum geometrical relationship, which is 
now known as Murray’s law, states that the cube of the diameter of the parent 
vessel must equal the sum of the cubes of the daughter vessels. When the 
parent/daughter branches obey Murray’s law, the system obeys the principle of 
minimum work. Furthermore, if the network consists of symmetric bifurcations, 
an important consequence of Murray’s law is that the tangential shear stress at 
the wall remains constant throughout the vascular system. In the present paper, 
we generalise this important hydrodynamic principle and provide a biomimetic 
design rule for microfluidic systems composed of arbitrary cross-sections. In 
particular, the paper focuses on the design of constant-depth rectangular- and 
trapezoidal-sectioned microfluidic manifolds that are often used in lab-on-a-chip 
systems. To validate the biomimetic design principles, a comprehensive series of 
computational fluid dynamic simulations have been performed.  
Keywords: biomimetic, microfluidic, vascular, manifold, lab-on-a-chip.  

1 Introduction 

It is evident that nature has perfected techniques and solutions that are often 
considered to be optimal. Understanding and extracting these “natural” design 
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strategies has opened up a whole new field of research known as biomimetics. 
Designs formulated using biomimetic principles range from novel surface 
treatments that mimic physiological processes to geometrical optimisation that 
improves the performance of a system. 

One research area where biomimetic principles could play an important role 
is in the design of microfluidic and lab-on-a-chip systems. In recent years, 
microfluidic devices have been increasingly used in a range of chemical, bio-
chemical and life-science applications. Miniaturisation offers many potential 
benefits including faster mixing and reaction times, increased chemical yields, 
and faster throughput rates for chemical assays. In addition, the small length 
scales of microfluidic systems offer the prospect of developing portable 
detection systems for point-of-care clinical diagnostics. However, little research 
is currently available concerning the optimisation of channel dimensions to 
ensure the most efficient flow through the device. 

The present paper shows how biomimetic principles based on the laws that 
govern biological vascular trees could be used to design artificial microfluidic 
distribution systems. The study focuses specifically on microfluidic manifolds 
composed of constant-depth rectangular- or trapezoidal-sectioned channels that 
can readily be fabricated using standard micro-fabrication techniques such as 
photolithography and wet or dry etching. Furthermore, by carefully selecting a 
branching parameter governing each bifurcation, it is shown that it is possible to 
introduce a prescribed element of control into the flow behaviour in the system. 

2 Theoretical basis of Murray’s law 

The geometrical configurations of vessels found in mammalian cardiovascular 
and respiratory systems have evolved, through natural selection, to an optimum 
arrangement that minimises the amount of biological work required to operate 
and maintain the system. The most distinctive feature of biological distribution 
systems is their hierarchical structure and the successive division of vessels 
which become smaller, both in length and diameter (as illustrated schematically 
in Fig. 1). The relationship between the diameter of the parent and daughter 
vessels was first derived by Murray [1] using the principle of minimum work. 
Murray found that the optimum relation between the diameter of the parent 
vessel (d0) and the two daughter branches ( 1ad and 1bd ) can written as 

 3 3 3
0 1 1a bd d d= + .  (1) 

This expression is nowadays known as Murray’s law but it is sometimes referred 
to as “the third power law”. For a symmetric bifurcation where 1 1a bd d= , eqn. 
(1) reduces to  
 3 3

0 12d d= .  (2) 

By making the assumption that the flow is fully-developed and ignoring the 
energy losses at each bifurcation, it is possible to obtain relationships between 
vessel diameters, average velocity, wall shear stress, flow resistance, pressure, 
and residence time for each consecutive generation of the vascular system. 
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The work of Murray was overlooked for almost half a century, but recently 
biological scaling laws are beginning to receive more attention. However, with 
the exception of the brief study by Lim et al. [2], there appears to be little 
application of Murray’s law to the design of man-made structures and, in 
particular, to the design of microfluidic channels and manifolds. 

n = 0         1        2    3   4  ….N
 

(a) (b) 

Figure 1: (a) Schematic representation of a symmetric bifurcating network of 
channels; (b) Layout of a typical constant-depth rectangular 
microfluidic manifold considered in the validation study.  

2.1 Generalisation of Murray’s law 

As demonstrated by Cieślicki [3], Murray’s law can be generalised if the change 
in diameter of each consecutive generation can be represented by a branching 
parameter, X: 

 
3
0
3
12

d
X

d
= .  (3) 

For 1X = , the parent/daughter branches obey the principle of minimum work. 
However, the branching parameter does not have to be unity and the generalised 
case of 1X ≠  can be used to design microfluidic manifolds with specific 
properties e.g. shear stress distributions or residence times. Assuming that the 
branching parameter is held constant throughout the hierarchical network, then 
the segment diameter of the nth generation can be written as 

 
( )

0
/ 32

n n
dd
X

= .  (4) 

Fig. 2(a) shows graphically how eqn. (4) behaves for a range of X values. It can 
be seen that the diameters systematically diminish when the branching parameter 
is greater than 0.5. For 0.5X = , the diameter at each generation is constant, 
whereas when 0.5X < , each diameter will systematically increase. For Murray’s 
law, ( 1X = ), the damping factor is equal to 2-1/3. This implies that the diameter 
of a segment will be halved after three successive generations. 
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Figure 2:  Normalised segment diameter (a), average flow velocity (b), wall 
shear stress (c), flow resistance (d), pressure distribution (e) and 
residence time (f) as a function of bifurcation level, n, in a vascular 
system that obeys the generalised form of Murray’s law. 
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For a symmetric system, the volumetric flow rate halves at each bifurcation 
i.e. 02 n

nQ Q−= . Using eqn. (4), the mean flow velocity, nU , in each generation 
can be shown to be 

 
/3

2
0

1
2

n

nU U X =  
 

.  (5) 

Fig. 2(b) shows the predicted velocity behaviour throughout the manifold as the 
branching parameter X is varied. It can be seen that if 2X < , the average 
velocity will decrease in each generation. 

The shear stress acting on the wall of a circular pipe in a fully-developed 
laminar flow can be written as follows: 

 8 U
d
µτ = ,  (6) 

where µ is the fluid viscosity. Substituting eqns. (4) and (5) into (6) gives 

 0
n

n Xτ τ= ,  (7) 

where 0τ  is the wall shear stress in the inlet channel (n = 0). Eqn. (7) is plotted 
in Fig. 2(c) and clearly illustrates that if Murray’s law is obeyed (X = 1), the 
magnitude of the wall shear stress remains the same at every point in the 
branching hierarchy. However, by changing the value of X, it is possible to 
introduce an element of control into the shear stress distribution. 

The hydraulic resistance of a single segment is defined as /P Q∆  and can be 
obtained from the Hagen-Poiseuille pipe friction formula. Furthermore, if the 
length of an individual segment is assumed to be proportional to its 
diameter ( )n nL d∝ , as frequently observed in biological systems [4], the 
resistance of a single segment in the nth generation can written as 

 3
n nR d −∝ .  (8) 

Using eqns. (4) and (8) allows the change of hydraulic resistance of consecutive 
generations to be related to the branching parameter X: 

 0 (2 )n
nR R X= .  (9) 

The total resistance, TR , of a bifurcating vascular tree can thus be written as 

 
1

31 2
0 0 0

0

1... ...
2 4 8 12 2

NN
in N

T n N
i

R R RR R XR R R X R
X

+

=

−
= + + + + + + + = =

−∑ . (10) 

For Murray’s law (X = 1), eqn. (10) reduces to ( ) 01TR N R= + . Examples of the 
total resistance of the network are shown in Fig. 2(d) for several values of X. 
When Murray’s law is obeyed, the resistance of each generation is identical, so 
the total resistance to the flow increases linearly with the number of generations. 
For X  > 1 the resistance of subsequent generations increases rapidly. However, 
for X < 1, the resistance of subsequent generations decreases and the total 
resistance will tend to a constant value of ( )0 / 1TR R X= −  as N → ∞ . 
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Using the analogy between pipe friction and electrical resistance allows the 
pressure to be determined throughout the network. It can be shown that 

 
1

1

0

1

N
i

N n
i nn out

NN
in out i

i

X
p p X X
p p X

X

+
=

+

=

 − −
= =   − − 

∑

∑
,  (11) 

where np is the pressure at the entrance to the nth generation and inp  and outp  
are the pressures at the inlet and outlet of a branching network with N bifurcation 
levels. Fig. 2(e) shows the normalised pressure distribution for a vascular system 
with 6 generations and several values of the branching parameter. For X < 1, the 
most significant loss of pressure occurs in the inlet channel (n = 0) with the 
pressure drop gradually diminishing at each successive generation, leading to a 
concave distribution. Conversely, for X > 1, the pressure drop becomes most 
significant at the outlet of the hierarchical tree, giving a convex profile. When 
X = 1, the pressure loss along each successive generation is constant, leading to a 
linear pressure distribution along the vascular structure. 

If the length of an individual segment is again considered to be proportional 
to its diameter (i.e. n nL k d=  where k is a constant), then the average residence 
time for a single segment in the nth generation, nt , can be written as 

 0 0 0

0 0

n n
n n n n

n n

L k d k d L t
t

U U U X U X X
= = = = = .  (12) 

The total residence time, resT , for the entire vascular tree with N bifurcation 
levels will then be 

 
1

0 0 1
0

1 1NN

res i N N
i

XT t t
X X X

+

+
=

−
= =

−
∑ .  (13) 

Typical residence time profiles are shown in Fig. 2(f) for different values of the 
branching parameter X. For X < 1, the time to flow through each successive 
generation increases with the number of generations. Conversely, for X > 1, the 
residence time decreases at each successive generation and the total residence time 
converges to a normalised value of ( )/ 1X X − . 

2.2 Extension of Murray’s law to non-circular ducts 

The extension of biomimetic principles to non-circular ducts has recently been 
demonstrated by Emerson et al. [5] who proposed that the design rule should be 
defined using an analogous expression to eqn. (7) but based on the mean value of 
the tangential shear stress in each segment, i.e.  

 0
n

n Xτ τ= .  (14) 
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The mean wall shear stress can be related to the Fanning friction factor, f , which 
in turn can be expressed in terms of the Poiseuille and Reynolds numbers [6]: 

 2 2

h

1 1 Po Po
2 2 Re 2

UU f U
D

µτ ρ ρ= = = ,  (15) 

where Dh = 4 × area/wetted perimeter is the hydraulic diameter of the cross-
section and U  is the mean flow velocity. Substituting eqn. (15) into (14) gives a 
generalised biomimetic principle that can be applied to all channel shapes 
irrespective of the cross-sectional geometry: 

 0 0n n

h h0

PoPo n

n

UU
X

D D
= .  (16) 

The only practical limitation on the use of eqn. (16) as a biomimetic design rule 
is the requirement to know the hydraulic diameter and the Poiseuille number of 
the cross-section. As an aside, for vascular systems composed of circular pipes, 
the Poiseuille number is identical in each generation ( Po 16= ) and the hydraulic 
diameter, Dh, is equal to the diameter of the section, d. Under these conditions, 
eqn. (16) reduces to eqn. (5). 

2.3 Application to constant-depth biomimetic networks 

The present study focuses on microfluidic manifolds composed of constant-depth 
rectangular- or trapezoidal-sectioned channels since these geometries can readily 
be fabricated using conventional micro-fabrication techniques such as 
photolithography and wet or dry etching. 

For a system composed of constant-depth rectangular channels, as typically 
encountered in dry etching techniques, the aspect ratio of the nth generation can 
be defined as /n nd wα = where d is the depth and wn is the width of the channel. 
After some algebraic manipulation, it can be shown that the biomimetic design 
rule defined in eqn. (16) can be written as a function of the aspect ratio: 

 ( ) ( ) ( ) ( )* *
0 0 01+ Po (2 ) 1+ Pon

n n n Xα α α α α α= .  (17) 

The Poiseuille number for a rectangular cross-section can be determined 
analytically [6] as follows: 

 ( )
1 2*

*
5 * 5 *

1,3,5...

192 1 1 1Po 24 1 tanh 1
2

n
n

in n

i
i

πα
α

π α α

− −∞

=

    
= − +            

∑ .  (18) 

Eqn. (18) is valid when * 1nα ≤ , which requires the width to be greater than the 
depth. To obtain the value of the Poiseuille number when the width is less than 
the depth ( 1)nα > , it is necessary to set * /n nw dα =  but it is important to note 
that αn in eqn. (17) remains as previously defined (i.e. /n nd wα = ). Any 
appropriate method for finding the root, αn , can be used and in the present study 
a simple bisection method has been found to be reliable. 
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Another important fabrication technique for constructing microfluidic 
channels involves anisotropically etching [100] silicon wafers using KOH. This 
results in a trapezoidal section with an angle of ( )1tan 2 54.74− = . It can be 
shown that the biomimetic design rule for KOH etched silicon channels can be 
written as 

 
( )

( )
( )

( )
( )

( )
2 2

0 0
02 2

0

2 3 1 2 3 1
Po (2 ) Po

2 2

n n n
n

n

X
γ γ γ γ

γ γ
γ γ

+ − + −
=

− −
,  (19) 

where /d aγ = is the aspect ratio of the channel, defined in terms of the upper 
width, a. For many practical channel geometries, including trapezoidal channels, 
the Poiseuille number cannot be obtained analytically. However, Morini [7] has 
shown that the Poiseuille number for KOH-etched [100] silicon channels can be 
determined from a 5th order polynomial as follows: 

 ( ) 2 3 4 5
1 2 3 4 5Po 24 1n n n n n nb b b b bγ γ γ γ γ γ = − + − + −  ,  (20) 

where the coefficients have the values of b1=1.7611, b2=2.6780, b3=4.9342, 
b4=10.0883, and b5=7.4496, respectively. 

3 Numerical validation 

The generalised biomimetic design rules for constant-depth channels have been 
validated by conducting a comprehensive series of computational fluid dynamic 
simulations on a range of rectangular- and trapezoidal-sectioned manifolds. The 
networks were restricted to four generations (n = 0, 1, 2, 3) and the channels 
were assumed to be 125 µm deep. For the rectangular channels, the initial aspect 
ratio was assumed to be either 2:1 (α0 = 0.5) or 5:1 (α0 = 0.2), while the initial 
aspect ratio for the trapezoidal section was taken to be 8:1 (γ0 = 0.125). Table 1 
presents the dimensions of the channels used in the numerical study. The channel 
widths were obtained by solving either eqn. (17) for nα  or eqn. (19) for nγ . 

Table 1:  Channel dimensions employed in the numerical study. 

Channel widths (µm) 
Rectangular Trapezoidal Bifurcation 

level, n 
X = 0.75 X = 1.0 X = 1.25  X = 1.0 X = 1.0 

0 250.0 250.0 250.0 625.0 1000.0 
1 177.7 143.3 123.0 312.9 536.7 
2 132.0 91.8 71.4 171.5 323.9 
3 101.7 62.5 44.2 106.3 230.1 
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The numerical simulations were conducted using the commercial 
computational fluid dynamics software package, CFD-ACE+ (ESI CFD, 
Huntsville, USA [8]). Fig. 3 shows the predicted normalised wall shear stress 
distribution in a rectangular microfluidic manifold and illustrates the progressive 
decrease in shear stress through the vascular system when 1X < . The effect of 
varying the branching parameter is further demonstrated in Fig. 4 which shows 
the normalised shear stress distribution and flow resistance for a range of 
channel aspect ratios and branching parameters. The theoretical and numerical 
predictions are in very good agreement, demonstrating the applicability of the 
proposed biomimetic design principle.  
 

 
Figure 3:  Predicted normalised wall shear stress distribution ( 0/nτ τ ) in a 

rectangular microfluidic manifold with a branching parameter of 
X=0.75 and an initial aspect ratio of α0 = 0.5.  
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Figure 4:  Normalised wall shear stress distribution (a) and flow resistance (b) 
in constant-depth rectangular and trapezoidal vascular systems that 
obey the generalised form of Murray’s law. Comparison between 
theoretical predictions (lines) and CFD results (symbols). 
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4 Conclusions 

Murray’s law was originally developed for cardiovascular systems composed of 
multi-diameter circular pipes. For symmetric bifurcating systems, an important 
consequence of Murray’s law is that the tangential shear stress at the wall 
remains constant throughout the vascular network. In the present paper, this 
important biomimetic principle has been generalised so that it is applicable to 
microfluidic networks composed of channels of arbitrary cross-section. The 
paper focuses specifically on the design of constant-depth rectangular- and 
trapezoidal-sectioned microfluidic manifolds that are often used in lab-on-a-chip 
systems. By carefully selecting a branching parameter governing the change in 
channel dimension at each bifurcation, it is shown that it is possible to introduce 
an element of flow control into the artificial vascular network. 
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