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Abstract

Spiders, with their ultra-optimized spinning process, are able to produce super-
fibers with remarkable mechanical properties. The precursor material is a lyotropic
nematic liquid crystalline anisotropic fluid. The mechanical properties and pro-
cessability of the silk fiber are intimately connected to the structural transition
undergone by this ordered fluid through the spinning pathway. In this work we
study a complex mesoscopic structure present in the extrusion duct of spiders’
spinning glands, whose stability depends on the interaction between point defects
located on the axis of the cavity. The phenomenon described is important in under-
standing the process-induced structuring of silk fibers and to defect physics in a
more general context.
Keywords: spider’s silk, liquid crystalline spinning, nematic point defects.

1 Introduction

Spiders ecologically produce fibers with mechanical properties comparable or supe-
rior to the best man-made superfibers [1, 2]. There is therefore a considerable inter-
est in understanding the design and processing details of the silk-precursor materi-
als. Green spinning processes as well as various exiting applications are envisaged
upon the successful mimetic of spider extrusion system and fibers [3, 4, 5].

Spider silk fibers are spun from a highly concentrated water-based solution of
elongated rod-like molecules or aggregates forming a lyotropic nematic liquid
crystal phase [6, 7, 8]. This silk precursor can flow as a liquid while maintaining
at the same time some degree of orientational order as a crystal. This orientational
order is characterized by the tendency that have neighboring rod-like entities to
align their long axis in parallel along a common direction [9, 10]. This preferred
molecular orientation usually varies from subregion to subregion in the mesophase
(i.e., intermediate phase) due to elastic effects coupled with geometrical and inter-
facial constraints [9]. The evolution of orientational order or molecular orientation
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Figure 1: Typical polarized light pattern seen in the extrusion duct of spiders’ spin-
ning glands and its correspondence to the ERPD molecular orientation
as represented by the director field n(r).

throughout the spinning pathway is extremely important as it affects the process-
ability of the silk precursor mesophase and determines the microstructural details
of the solidified fiber and hence its remarkable mechanical properties [6, 7, 8].

The spinning apparatus of spiders basically consist of three major regions: a tail
where the silk precursor material is synthesized, a central bag where it is stocked
in a concentrated solution, and a spinning extrusion duct from which the silk fiber
is drawn [11].

Observations made by polarized light microscopy in the extrusion duct have
revealed the presence of a complex orientation structure known as escaped radial
with point defects (ERPD) [8, 12, 13, 14]. Figure 1 shows a typiolarized light
pattern observed along the spinning duct and its corresponding ERPD molecular
orientation using the director field representation. The director field n(r) is given
by unit vectors defining local average preferred molecular orientations. Generally
n(r) = −n(r) and therefore the unit vectors are arrowhead-free [9, 10]. The point
defects, referred as hedgehogs, are located where the direction of bending distor-
tions changes; at those particular locations, no unique director n can be defined
as the orientational order melts. As it can be seen from Fig. 1(b), two types of
defects are found in an alternative manner. The point defect found at the center of
this figure is of the radial type whereas its two neighbors belong to the hyperbolic
type [15].
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Whether this particular molecular configuration is an accident of Nature or a
necessary ingredient of the spider biospinning process is unknown at this time.
Nevertheless, it might be hypothesized that this structure may play a role in the
control of material crystallization along with water pumping, ions exchanges and
pH reduction phenomena [8]. A premature crystallization of the silk may indeed
cause the permanent blockage of the extrusion system and lead to the death of the
animal [8, 16].

In this work, we investigate the stability of the ERPD structure occurring in
the extrusion duct of spiders spinning glands. The stability of the ERPD struc-
ture is known to be governed by the interaction between the nematic point defects
found along the axis [15, 17]. This interaction, mediated by the elastic deforma-
tions of the material, can cause the defects to move along the axis of the cavity.
When two defects of opposite type are sufficiently close to one another they usu-
ally annihilate. On the other hand when defects are well separated their interaction
is screened [15].

2 Modeling

In order to study the stability of the ERPD structure in the extrusion duct of spider
we consider two point defects of opposite types located on the axis of cylindri-
cal cavity. Due to the rotational symmetry of the structure, we consider a simple
two dimensional rectangular domain representing half of a cross section. Dimen-
sionless quantities (denoted by overbars) and equations are used to reduced the
number of parameters and facilitates analysis as well as comparisons. The dimen-
sionless width and height of the computational domain correspond respectively to
the dimensionless length Z̄ and radius R̄ of the cylindrical cavity. The dimension-
less position vector is defined as r̄ = r/R where R is the dimensional radius of
the cavity .

The continuum nemato-dynamics equation describing the structure evolution
of a nematic liquid crystal is typically derived from the minimization of a free
energy functional depending on some order parameter [9]. In this work the nematic
ordering is described in terms of a tensor field Q(r), called tensor order parameter
[9]. This tensor order parameter is symmetric traceless (i.e., Qij = Qji and Qii =
0) and, according to a spectral decomposition, reads:

Qij = µnninj + µmmimj + µllilj (1)

In this expression, n, m and l are unit eigenvectors forming an orthogonal triad
and µn, µm and µl are their corresponding eigenvalues. The director triad and
the eigenvalues are characterizing the orientation and the strength of alignment of
the phase respectively. The largest eigenvalue in magnitude or absolute value, µn,
gives the strength of ordering along the uniaxial director n previously defined. The
second µm and third µl eigenvalues correspond respectively to the biaxial directors
m and l (l = n × m). At equilibrium, an undistorted nematic phase is uniaxial;
however, in distorted regions like in the vicinity of defects the phase may exhibit
some biaxiality [9].
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The eigenvalues µi (i = 1, 2, 3) of the tensor order parameter are restricted by:
−1/3 ≤ µi ≤ 2/3 and µn + µm + µl = 0. The ordering states described by
the tensor order parameter are: isotropic (µn = µm = µl = 0; Q = 0), uniaxial
(µn > µm = µl) and biaxial (µn �= µm �= µl). Finally it is stressed that within
this tensorial formalism, order is continuous and defined everywhere including at
defect cores unlike in the simpler vectorial description in terms of the director field
(See Fig. 1).

It is also often useful to represent the tensor order parameter Q in the following
alternative, but more compact format:

Qij = S(ninj − δij

3
) +

P

3
(mimj − lilj) (2)

In this expression, S and P are uniaxial and biaxial scalar order parameters describ-
ing respectively the strength of alignment around the uniaxial and biaxial directors
(i.e., n and m). The Kronecker δ stands for the unit tensor. The scalar order param-
eters are defined as: S = 3/2(niQijnj) and P = 3/2(miQijmj − liQij lnj). The
correspondence between the scalar order parameters and the eigenvalues is as fol-
low: µn = 2/3S, µm = −1/3(S −P ) and µm = −1/3(S + P ). The scalar order
parameters obey the following restrictions: −1/2 ≤ S ≤ 1 and −3/2 ≤ P ≤ 3/2.

The dimensionless total free energy of a nematic liquid crystal F̄ system under
strong anchoring conditions (i.e., the orientation of the molecules at the boundary
is fixed) is generally written as [9]:

F̄ =
∫

V

(f̄h + f̄g)dr̄3 (3)

In this expression, f̄h and f̄g represent respectively the homogeneous and gra-
dient bulk free energies. We note that f̄b = fb/A where f̄b = f̄h + f̄g and A
is an energy density scale. Also, accordingly F̄ = F

AR3 . The homogeneous free
energy describes the short-range ordering effects related to the amplitude of the
tensor order parameter. This expression permits to describe the first order isotropic-
nematic phase transition but also the variation of ordering in the vicinity of defects.
This contribution is often referred as the Landau-de Gennes free energy. Accord-
ing to Doi’s formalism [18], this expension of the order parameter may be written,
in dimensionless form, as:

f̄h =
1
2
(1 − U

3
)QijQji − U

3
QijQjkQki +

U

4
(QijQji)2 (4)

In this expression U is a dimensionless phenomenological parameter called
nematic potential which controls the magnitude of the equilibrium tensor order
parameter. In general the nematic potential U can be assigned a dependence on
either temperature or concentration depending on the nature of the nematic liq-
uid crystal (i.e., thermotropic or lyotropic) [18]. Within this format, the first order
phase isotropic-nematic phase transition occurs at nematic potential UIN = 2.7.
Also, the system is isotropic for U < UIN and nematic for U > UIN . The limit
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of metastability for the isotropic and nematic phase are U∗ = 3 and U∗∗ = 8/3,
respectively.

The gradient bulk free energy f̄g represents the energy variations due to long-
range ordering effects. This energy penalty associated with the elastic distortions
of the phase can be expressed in dimensionless form as:

f̄g =
ξ̄2

2
∇̄kQij∇̄kQij (5)

In this equation ξ̄ represents the reduced nematic coherence length which gives
a characteristic scale for the variation of the tensor order parameter and the size
of defect cores or thickness of the nematic-isotropic interface. It is noticed that
∇̄ = R∇, ξ̄ = ξ/R and ξ =

√
L/A where L a material-specific elastic constant.

The dynamic equation describing the relaxation of the tensor order parameter
Q(r, t) towards an equilibrium value that minimizes the total free energy F̄ fol-
lows from variational principles and is given in dimensionless format by [19]:

∂Qαβ

∂t̄
= − δF̄

δQαβ
(6)

The right-hand side of this expression corresponds to functional derivative of the
of the total free energy. Here again we stress that t̄ = A

γ t where γ a kinetic constant
associated with rotational viscosity. From variational calculus it can be shown that:

δF̄

δQαβ
=

∂f̄b

∂Qαβ
− ∇̄γ

∂f̄b

∂∇̄γQαβ
(7)

Only the symmetric traceless part of this expression is retained in order to satisfy
the constraints of the tensor order parameter.

The boundary conditions for the problem are as follows: at the wall of the cylin-
drical cavity (upper part of the rectangular domain), the tensor order parameter is
assumed to be uniaxial and describe a strong radial anchoring condition so that
Qij(r = R) = Se(er

i e
r
j − δij

3 ), where er is the unit vector along the radial direc-
tion. The equilibrium scalar order parameter Se is obtained analytically from Eq. 4
and is given by the relation [18]:

Se =
1
4

+
3
4

√
1 − 8

3U
(8)

On the z-axis (lower part of the rectangular domain), rotational symmetry bound-
ary condition is assumed. Finally, on the sides of the domain, Neumann conditions
are enforced so as to emulate an infinitely long cavity.

Initially, the systems contains a hedgehog pair whose cores are separated by a
distance D̄ = 2.4. The hyperbolic and radial hedgehogs are respectively located
at z̄ = −1.2 and z̄ = 1.2. The corresponding initial tensor field Q(r, t = 0) is
obtained by taking a few time steps starting from a trial configuration satisfying
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Figure 2: Evolution of orientational order during the annihilation of two nematic
point defects confined in a cylindrical capillary. Each ellipse represents a
tensor order parameter Q. The orientation and amplitude of an ellipse is
given by the eigenvectors and eigenvalues of Q. (a) t̄ = 0, (b) t̄ = 39740,
(c) t̄ = 40600 and (d) t̄ = 40900.

all the boundary conditions. Other initial defect configurations do not change the
essential features of the results.

The model used in this work contains two parameters: the nematic potential U
and the reduced nematic coherence length ξ̄. For all the simulation results pre-
sented in this paper, the nematic potential is set to U = 6 which corresponds to an
equilibrium scalar order parameter of Se = 0.809. Other values of U in the stable
nematic range do not change the underlying process under study. The value of the
reduced coherence length is fixed at ξ̄ = 1/30.
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Figure 3: Position of the point defects along the cavity axis as a function of time.

The governing dynamic equation for the tensor order parameter Q(r̄, t̄) is solved
using the standard numerical method of lines. The space discretization is achieved
by the finite element method. The time integration of the resulting differential
equations is obtained using an adaptive implicit scheme. The density of element is
higher in the region describing the trajectories of the defects along the z̄-axis. The
independence of solutions on mesh density was verified using standard procedures.
The size of the triangular elements is always smaller than the reduced coherence
length ξ̄ (smallest length in the problem) to accurately capture the amplitude vari-
ations of the tensor order parameter. The reduced width and height of the compu-
tational domain are respectively Z̄ = 6 and R̄ = 1.

3 Results

This section illustrates the dynamic interaction between two nematic hedgehogs
confined in a capillary tube. A similar process is though to occur in the extru-
sion duct of spider’s spinning gland. Figure 2 shows the typical evolution of ori-
entational order during the annihilation of the point defect pair. In this figure,
the tensor order parameter Q(r, t) is represented as an ellipse. The orientation
and amplitude of each ellipse is given by the eigenvectors and eigenvalues of the
order parameter. Within, this representation, an elongated ellipse corresponds to
a well-ordered nematic region whereas a circle corresponds to a low orientational
ordering. Three stages of the annihilation process are shown. In the pre-collision
regime Fig. 2(a) and Fig. 2(b), the two point defects have distinct, well separated,
cores. As they move closer one another, the distortion in the ellipses orientation
increased. However, this process is not accompanied by any significant changes in
the defect core structure and ordering. In the collision regime Fig. 2(c), the cores
of the defects slowly overlap to finally become indistinguishable. In this regime,
structural changes are mainly given by changes in alignment (i.e., amplitude of the
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Figure 4: Total free energy and interaction force between the point defects as func-
tion of the inter-defect distance.

tensor) rather than orientation. It can be seen that the shape of the ellipses now
changes in the inter-defects region in contrast to the pre-collision regime. Finally
in the post-collision regime Fig. 2(d), the tensor order parameter field relaxes to its
equilibrium value and the remaining axial gradients are smoothed-out. The result-
ing structure, known as escape radial (ER), is defect free and possesses a single
bending direction.

Figure 3 illustrates the displacement of the two point defects during the annihi-
lation process. The positions of the defects correspond to the minima of the uni-
axial scalar order parameter S. The two trajectories show that the defects travel at
identical speeds. The speed of each defect is however not constant and tend to dra-
matically increase as the defects approach each other. At large separating distance,
the defects speed is essentially null.

Figure 4 shows the variation of the total free energy as a function of the defect
separating distance and corresponding interaction force. The interaction force is
computed by differentiating the total free energy with respect to the inter-defect
distance. It can be seen from this figure that the interaction force tends to zero
as defects are separated by more than a diameter. However as defects approach
each other, this interaction force increases exponentially. In the late stage of the
collision regime, governed by alignment and therefore the amplitude of the tensor
order parameter, the interaction force is decreasing in a quasi-linear fashion. The
value of the force at vanishing defect separating distance is small but finite to the
level of discretization of our model.

4 Conclusions

Motivated by the reported experimental observation of ERPD structures in the
extrusion duct of spiders spinning apparatus, we have investigated numerically
the dynamic interaction between two nematic point defects of opposite topolog-
ical charge confined in cylindrical cavity. In contrast to previous analytical [17]
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and numerical [15] studies we employed the tensor order parameter formalism to
describe the orientational order of the nematic phase, which allows for an unam-
biguous description of defects and reliable estimation of energies. Three distinct
regimes leading to the annihilation of the antagonist point defect pair were
described. The trend of the defect trajectories agree very well the one found in
theoretical [17] and experimental [20] studies. The absence of asymmetry in the
defect trajectories as reported in Ref. [21] is attributed to the absence of back-
flow effects as well as to the isotropy of the elastic constant. These effects will be
investigated in future work and will be reported. The reasons of the point defect
annihilation were also investigated. In particular, the dependence of the total free
energy and corresponding interaction force on the inter-defect distance was ana-
lyzed. It was shown that the interaction force between the defect, which set them
into motion, is decreasing exponentially at large defect separating distance. As
predicted theoretically in Ref. [22] and shown experimentally if the point defects
are separated by a distance greater than a diameter, the interaction force is shielded
and the defects pinned. In contrast to previous studies having reported explicitly
the force of interaction, we have found that at short separating distance, the interac-
tion force was decreasing very steeply in a linear way. We show that this distinctive
behavior is due to the significant variation of the order parameter in the late stage
of the collision regime. During the whole process the interaction force was found
to be strictly attractive. Finally we would like to emphasize that despite that the
context of our study is the process-induced structure in the biospinning of spider
silk, the results obtained should be useful to the field of defect physics. The present
work provides a theoretical framework to eventually extract engineering principles
used in the biospinning process. Having established the stability properties of the
structural unit (pair of point defects) in the spider duct, the next step will be to
elucidate the emergence of this structural unit and its interaction with other neigh-
boring point defects, as they arise in real spider ducts. This work is supported by
the Natural Science and Engineering Research Council of Canada (NSERC). G.D.
wishes to acknowledge financial support from NSERC through the CGS program.
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