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Abstract 

This paper presents an inverse- and decompositional-analysis of unobserved 
trigger factors according to slope failure types. Due to the difficulties of pixel-
based observation on the trigger factors, we had proposed the inverse analysis 
algorithm based on the structural equation modeling (SEM). Through the 
“measurement equation” defined between the causal factors (i.e., observed 
variables) and the trigger factor (i.e., unobserved latent variable), the trigger 
factor can be inversely estimated.  
     As the subsequent subjects for the previous studies, in this contribution, we 
have tried to decompose trigger factors into the “1st trigger factor” and the “2nd 
trigger factor” with respect to slope failure types, such as surface slope failure, 
deep-seated slope failure, and landslide, which had been induced by Niigata 
Chuetsu Earthquake (Oct. 23, 2004). The 1st and the 2nd trigger factor influence 
map have been also produced according to the slope failure types. As a final 
outcome, the differences in these TFI maps are delineated on a “difference (DIF) 
map” that enables us to analyze the difference of trigger factor influence with 
respect to slope failure types simultaneously. 
Keywords: slope failure types, inverse and decompositional analysis of trigger 
factors, geographical information, satellite remotely sensed data, structural 
equation modeling. 

1 Introduction 

A spatial data integration technology using various kinds of geographical 
information (termed “causal factor”) has become a current trend for identifying 
the hazardous area affected by slope failures and landslides. Quantitative 
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prediction models for slope failure occurrences generally elucidate the 
relationship between past slope failures and causal factors (e.g. geology, soil, 
slope, aspect, etc.). Due to the difficulties of pixel-by-pixel observation of trigger 
factors (e.g. earthquake, rainfall, weathering, etc.), The trigger factors as 
explanatory variables are substituted for some of causal factors in constructing 
models, on the assumption that there are some correlations between causal 
factors and trigger factors [1–3].  
     As a measure, we had tackled to construct a Trigger Factor Inverse analysis 
model (TFI model) of unobserved trigger factor, in which the relationship 
between past slope failures (i.e., endogenous variables), causal factors (i.e., 
explanatory variables), and trigger factors (i.e., unobserved variables) are 
delineated on the path diagram in the Structural Equation Modeling (SEM) [4, 
5]. In the TFI model, through the “measurement equation” defined between the 
causal factors and the trigger factor (i.e., unobserved latent variable), the trigger 
factor can be inversely estimated [9].  
     In the TFI model, the pixels corresponding to past slope failures are generally 
used as the input data of endogenous variable (i.e., training data sets). The 
inverse estimated values on trigger factor are delineated on a Trigger Factor 
Influence map (termed “TFI map”), which depends on the distribution of the 
types of past slope failures used as the training data sets. Also, in our previous 
experiments, as for the structure of path diagram used in SEM, a “single 
exogenous variable” had been considered as main trigger factor of rainfall [9].   
     However, as either slope failures or landslides are induced by various trigger 
factors, the modified path model with several exogenous variables as trigger 
factors should be investigated to improve the identification of path model in 
SEM approach. This inevitable subject exactly resolves into a decompositional 
analysis of unobserved trigger factors according to “slope failure types”. With 
those issues as background, our efforts in this study are to:  
� construct an inverse- and decompositional-analysis algorithm of unobserved 

trigger factors with respect to the “different types” of slope failures; and 
� provide a pair-wise comparative strategy of the 1st and the 2nd  trigger factor 

influence maps according to the slope failure types. 

2 Background, study area and input data sets 

2.1 Necessity of decompositional estimation of slope failure trigger factors 

Chung and Fabbri have adopted the formulas for geologic hazard zonation as a 
part of “favorability function” approaches [1], and the various procedures have 
been applied to the landslide prediction. To improve the performance of the 
quantitative models as well as optimizing prediction, the practical analytical 
procedures had been presented as follows; i) Comparative strategy of the 
prediction models [6], ii) Analysis of the landslide types [7], iii) Testing on the 
time-robustness in prediction [8]; and iv) Sensitivity analysis of the prediction 
models with respect to the causal factors [2].  
     These analytical procedures are crucial components of the model for 
optimizing the predictions. The previous quantitative prediction models, 
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however, generally construct the relationship between the “past slope failures” 
and the “causal factors”, and do not deal with the “trigger factors”, due to the 
difficulties of “pixel-by-pixel” observation on trigger factors. To overcome this 
issue, an inverse analysis algorithm on the “trigger factors” had been constructed 
[9]. As the structure of path diagram used in the SEM approach, a “single 
exogenous variable” had been considered as a main trigger factor.  

 

 

Figure 1: Inverse- and decompositional-analysis of unobserved trigger 
factors according to slope failure types based on the structural 
equation modeling. 

     Note that, the study area had also local-downpour for several days before the 
huge earthquake of Niigata Chuetsu Earthquake. Therefore the inverse- and 
decompositional-analysis of such “chain trigger factors” is a requisite function of 
quantitative models for the better assessments of slope failure hazard. As a 
measure, in this study, we have tackled the inverse- and decompositional-
analysis of unobserved trigger factors (see Figure 1) according to “different 
types” of slope failures. Through this procedure, the Trigger Factor Influence 
(TFI) maps with respect to the 1st and the 2nd trigger factor are produced. 
Furthermore, a pair-wise comparative analysis for these TFI maps has been 
carried out based on the Hayashi’s quantification method of the fourth type.  

2.2 Study area and causal factors as input data sets 

The study area is located on Yamakoshi-mura in Niigata prefecture, Japan, 
where various types of slope failures, such as surface failure, deep-seated slope 
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failure, and landslide, had been induced by Niigata Chuetsu Earthquake (Oct. 23, 
2004). Through the field investigation with the aerial photographs, the different 
types of slope failures, such as “surface slope failure”, “deep-seated slope 
failure”, and “landslide”, had been plotted on the topographical map as the 
training data sets.   
     In this study, the inverse and decompositional analysis model of unobserved 
trigger factors has been constructed the relationship between those past slope 
failures and the following nine “causal factors”: (1) Surface geology (2) Soil, 
(3) Topography, (4) Vegetation index, (5) Aspect, (6) Elevation, (7) Drainage, 
(8) Relief, and (9) Slope. Each map consists of 120×100 pixels (3.6 Km×3.0 Km, 
30m/pixels). The latter five factors were produced based on the Digital Elevation 
Model (DEM). The experts in each research field had produced the maps of 
surface geology, soil and topography. From the IKONOS data, the vegetation-
index map is also produced by calculating the Normalized Vegetation Index 
(NVI) (see Appendix A). 

3 Model specification 

3.1 Conditional probabilities as input data 

To evaluate the hazardous area affected by slope failure at each pixel with 
respect to different types of slope failures, let us consider the following 
proposition: 
         Fp : “ a pixel p will be affected by a future slope failure of a given type”.    
     The conditional probabilities in each pixel, corresponding to the ith category 
of the jth causal factor, are given by 

ij

ij
ijp

N
TCFProb =)|(                    (1) 

where Cij is the ith category of the jth causal factor; Nij is the number of pixels of 
Cij; and Tij is number of pixels of the past slope failures or landslides, which had 
occurred in the area corresponding to Cij. Prob(Fp|Cij) is used as the input data 
(i.e., exogenous variable) for the SEM-based analysis. 
     To construct a quantitative prediction model, the relationship between the 
past slope failures of training data sets (i.e., endogenous variables), the causal 
and trigger factors (i.e., exogenous variables) should be delineated on the path 
diagram used in the SEM approach. Figure 1 shows the path diagram used in this 
study, which is called a recursive model. Prob(Fp | Cij) of equation (1)  is the 
input data set as exogenous variables, while the pixels corresponding to 
occurrences and non-occurrences of slope failures are assigned to the value of 
“1” or “0”, respectively, that are used as the training data sets.  
     To exclude a multi-collinearity between causal factors, among a pair of causal 
factors with high correlation (e.g., above 0.7), one of a pair with high partial 
correlation was selected in analysis. Figures 1(a) and 1(b) illustrate the path 
diagrams composed of selected causal factors, and the training data sets of these 
models are as follows:  
� Model A: using training data set of “surface slope failure”; 
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Table 1:  Evaluation of model fit. 

M easure of fit M odel A M odel B M odel C

GFI 0.999 0.998 0.999
AGFI 0.994 0.991 0.995
AIC 126.9 156.8 112.1

RM SEA 0.024 0.031 0.021
 

   Notes: Model A: using training data set of “surface slope failure”  
   Model B: using training data set of “deep-seated slope failure” 
   Model C: using training data set of “landslide”. 
 

� Model B: using training data set of “deep-seated slope failure”; and   
� Model C: using training data set of “landslide”. 

3.2 Evaluating model fit  

Not knowing the trigger factors, the program is how to estimate the path weights 
of {a1 , ... , an , b1 , ... , bn , c1 , ... , cn} in Figure 1. Through the SEM-based 
estimation procedure, those are estimated by minimizing the errors between the 
observed and reemerged “variance-covariance matrix”. Among various 
estimation procedures (e.g., maximum likelihood estimation, asymptotically 
distribution-free estimation, generalized least squares estimation, etc.), the 
maximum likelihood estimation procedure was selected in this study, which is 
generally reported as a better estimator for the large population. 
     For evaluating model fit, the Goodness of Fit Index (GFI), the Adjusted 
Goodness of Fit Index (AGFI), the Akaike Information Criterion (AIC), and the 
Root Mean Square Error Approximation (RMSEA) are applied as the generally 
employed statistical measures of fit. Details on these fit measurements are 
available in Hoyle [5]. Table 1 shows the results of calculating these fit 
measures. By rule of thumb, GIF and AGFI need to be more than 0.9, 
conversely, RMSEA should be less than 0.08 for selecting reasonable model. 
AIC are also used to “comparison” of the model fit. The model with lower value 
of AIC is considered to have better fit from the other. Based on these criterions, 
Table 1 gives us an indication of which all models can be accepted as a model. 
These results imply the significance of adding the plural unobserved trigger 
factors (i.e., latent variables) to the path diagram.  

3.3 Inverse- and decompositional-analysis of unobserved trigger factors 

Note that the path components connecting “unobserved variables to each other” 
and “observed variables to unobserved variables” are generally termed the 
“structural equation” and “measurement equation”, respectively (see Figure 1). 
In this study, through the measurement equation, the influences of the trigger 
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factors are inversely estimated at each pixel, and they are delineated on a 
“Trigger Factor Influence map (termed TFI map)”.  
     In Model A, the “measurement equation” between the trigger factors (i.e., 
unobserved variables) and the causal factors (i.e., observed variables) is given by 

jiijijji efafaz ++= 2211                                         (2) 

where zji is the input value of the ith pixel in the jth causal factor as shown in 
equation (2); f1i and f2i are the unobserved trigger factor corresponding to the 1st 
and the 2nd trigger factor, respectively (see Figure 1); a1j and a2j are the path 
parameters that are linked the jth causal factor with the 1st and the 2nd trigger 
factor; and eji is the error term of the ith pixel in the jth causal factor.  
     The objective is to inversely calculate the estimates for f1i and f2i of the 
unobserved trigger factors. Suppose if1̂  and if2̂ are the estimates of f1i and f2i, 
respectively, then the inverse functions are given by 

∑
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where h1j and h2j are the inverse parameters; and p is the number of the causal 
factors. h1j and h2j are determined by minimizing the following square error: 
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where n is the number of pixels in the study area. To solve equations (6) and (7), 
note that the average and variance of zji are standardized to “0” and “1”, 
respectively. Also, assuming that there is no correlation between the 1st and the 
2nd trigger factor, h1j and h2j can be simply given by  

∑
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where jjr ′ is the element (j , j’) of inverse matrix for the correlation matrix 
between causal factors. Using equations (3) and (4), if1̂  and if2̂ can be calculated 
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and delineated on the 1st and the 2nd trigger factor influence maps (TFI maps), 
respectively. 

3.4 Success rate 

To evaluate the performance of model itself, the “success rates” are calculated as 
shown in Figure 2. 10% of X axis means the pixels with the highest 10% 
estimated values on the trigger factor influence are classified as hazardous. 
Among these pixels, the rate of correctly classifying the pixels of past 
occurrences of slope failures (i.e., training data sets) are indicated on Y axis as 
“success rate”. Similarly, for the pixels with the highest {20%, 30%, ..., 90%} of 
estimated values, the success rates are calculated repeatedly.  
 

  

Figure 2: Success rate curves. 

     If the model is “reasonably good”, then one would expect that the success rate 
of the corresponding first class with 10% estimated value, which is defined as 
hazardous area, should be much higher than 10%. From the success rate curves 
in Figure 2, the following points can be made: 
� For the pixels with the highest 30% of estimated value, all the success rates 

for the 1st trigger factors according to the slope failure types indicate more 
than 70%, which corroborates the inverse and decompositional operation in 
estimating the 1st trigger factors is functioning. 
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� Furthermore, the estimated value of the 1st trigger factor is higher than that 
of the 2nd trigger factor. Note that the huge earthquake with the antecedent 
rainfall had caused different types of slope failures in this study area. The 
1st trigger factor (i.e., main trigger factor) and the 2nd trigger factor can be 
considered to have reflected the influence of the earthquake and rainfall, 
respectively. 

� The lowest success rate curve with respect to the 2nd trigger factor comes 
from the “surface slope failure”, which suggests the surface slope failure is 
influenced only from the 1st trigger factor (i.e., earthquake in this study 
case). 

     These results suggest that the proposed approach on the inverse and 
decompositional analysis is applicable for estimating the unobserved trigger 
factor with respect to the different types of slope failures. To evaluate the 
relationship between the 1st and the 2nd trigger factors according to the slope 
failure types, let us consider the pair-wise comparative strategy of TFI maps 
based on Hayashi’s quantification method of the fourth type, which is well 
known as one of the multivariate statistical analysis. 

3.5 Pair-wise comparison of trigger factor influence maps 

As a final product of the inverse- and decompositional-analysis of trigger factors, 
the estimated values of if1̂  and if2̂ are delineated on the “Trigger Factor 
Influence map (termed TFI map)”. Figure 3 indicates the difference maps 
(termed “DIF map”) with all combination cases of TFI maps, with respect to 
“surface slope failure”, “deep-seated slope failure”, and “landslide”, respectively, 
Note that the legend for these DIF maps lead to the following interpretation on 
the difference of trigger factor influence: 
� Shade of red: The estimated values in each pixel of TFI map-A (see 

Figure 3) are larger than that of TFI map-B; 
� White: The estimated values in each pixel of TFI map-A are almost 

equivalent to that of TFI map-B; and  
� Shade of blue: The estimated values in each pixel of TFI map-A are 

lower than that of TFI map-B.  
     As mentioned above, note that, before the huge earthquake of Niigata Chuetsu 
Earthquake (Oct. 23, 2004), the study area had also caught in local-downpour for 
several days. So, it is possible to say that the 1st trigger factor (i.e., main trigger 
factor) and the 2nd trigger factor correspond to “earthquake” and “rainfall”, 
respectively.  
     Based on this assumption, we would say that the larger the values in each 
pixel of TFI map on the 1st trigger factor are, the higher the risk of the given 
types of slope failures affected by “earthquake (in this study case)” as a main 
trigger factor. On the other hand, the larger the values in each pixel of TFI map 
on the 2nd trigger factor are, the higher the risk of the slope failures affected by 
“rainfall” (in this study case) as the 2nd trigger factor.  
     Figure 3 indicates that the pixels with higher estimated values on the 1st 
trigger factor on the landslide and the deep-seated slope failure tend to be 
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distributed in either the central or the east part in the study area. Such “heuristic 
information” would be useful not only for assessing the unobserved trigger 
factors introducing the expert’s opinion, but also for improving the cost-
effectiveness in locating the places for setting the field measuring systems (i.e., 
rain gage, tiltmeter, tensiometer, etc.). 
 

 
 

Figure 3: Difference maps (DIF maps) between trigger factor influence (TFI 
maps) according to “slope failure types”. 

3.6 Exploratory analysis of decomposed trigger factors 

The pair-wise comparative strategy as shown in Figure 3 are useful for clarifying 
the spatial differences between the TFI maps, however, there are limitations in 
analyzing the mutual relationships between decomposed trigger factors 
according to slope failure types. As a measure, in this study, the Hayashi’s 
quantification method of the fourth type is introduced, which is a set of related 
multivariate analysis method (e.g., multi-dimensional scaling) often used in data 
visualization for exploring similarities or dissimilarities in multivariate data. The 
dissimilarity measure (DI) used in this study is as follows: 
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where n is the number of pixels in the study area, ix and iy  are the estimated 
values in each pixel of TFI map-A and TFI map-B (see Figure 3), respectively.  
 

 

Figure 4: Scatter diagram with respect to decomposed trigger factors. 

     Based on a matrix consisted of the dissimilarity measures (DI) between all 
pairs of items, a location of each item is plotted on the N-dimensional space. The 
items correspond to the 1st and the 2nd trigger factors according to the slope 
failure types. Figure 4 illustrates a scatter diagram with respect to these items, in 
which the axis X and Y correspond to the 1st and 2nd eigen value, respectively.  
     The scattered distribution on three items of the 1st trigger factors corroborates 
the inverse- and decompositional operation according to the slope failure types 
would be functioning. On the other hand, the items of 2nd trigger factors are 
closely distributed, which means the models shown in Figure 1 suggest the 
difficulty of decompositional estimation of other trigger factors except the main 
trigger factor of slope failure.  

4 Conclusions 

In this contribution, we have discussed inverse- and decompositional- analysis of 
unobserved trigger factors according to the slope failure types, based on the SEM 
approach. The results of this study are summarized as follows: 
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� Due to the difficulties and limitations of “pixel-based observations” of slope 
failure trigger-factors, we strongly point out the necessity for the inverse- 
and decompositional-analysis of “unobserved trigger factors”. As a measure, 
through the measurement equation (defined in SEM) between the causal 
factors (i.e., observed variables) and the trigger factors (i.e., unobserved 
variables), a “Trigger Factor Influence map (termed TFI map)” is produced; 

� As a decompositional analysis of the trigger factors, the trigger factors are 
decomposed into the “1st trigger factor” and the “2nd trigger factor”. The 
Trigger Factor Influence maps (TFI map) with respect to these trigger 
factors are also produced according to the different types of slope failures; 
and  

� As a final outcome, the differences in these TFI maps are delineated on a 
“difference (DIF) map” that enables us to analyze the difference of trigger 
factor influence with respect to slope failure types simultaneously. 
Furthermore, a pair-wise comparative analysis for these TFI maps has been 
carried out based on the Hayashi’s quantification method of the fourth type.  

 

     In order to further proceed in the practical application of the inverse- and 
decompositional-analysis algorithm, the following observations can be made: 
� As a decompositional analysis of the trigger factors, we only considered the 

dual “exogenous variables” as shown in Figure 3. However, either slope 
failures or landslides can be affected by various kinds of trigger factors. So, 
the modified path models with three or more exogenous variables should be 
investigated to improve the identification of models in the SEM approach; 
and  

� As occasion demand of investigators and specialists working on the slope 
failures, we can readily add the training data sets of other types of slope 
failures or landslides in the analysis. The analytical procedure proposed in 
this study can contribute to the slope stability evaluation as one of the 
systematic approaches.  

 

     We should admit that “precise estimation” of unobserved trigger factors with 
respect to slope failures and landslides is impossible. However, to overcome 
some of the limitations of conventional approaches for quantitative prediction 
modeling, the inverse and decompositional analysis procedure of unobserved 
trigger factor presented in this study can contribute to the evaluation of 
hazardous area affected by various types of slope failures.  
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Appendix A  

The Normalized Vegetation Index (NVI) used in this study as one of the causal 
factors is given by  

REDNIR
REDNIR

NVI
+

=
－                                           (11) 

where NIR and RED are the Digital Number (DN) values of pixels corresponding 
to Near-infrared- and Red-band of satellite IKONOS data, respectively. 
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