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Abstract

Bioemergencies and bioterrorism play an increasingly important role in public
health disaster preparedness. Posing a major challenge, the timely distribution of
vaccine and medication to the population in case of an emergency requires contin-
gency plans to be thoroughly analyzed. The enormous scale of possible response
scenarios together with intrinsic confidential requirements make field studies both
infeasible and unpractical. Computational tools offer the ability to evaluate differ-
ent scenarios and alter contingency plans instantaneously. Here, we describe the
methodology for the evaluation of response scenarios involving the dispension of
vaccine or medication at fixed locations within a geographic region.
Keywords: pandemics and biological threats, terrorism, emergency preparedness
and planning, disaster resilient communities, public health preparedness.

1 Introduction

County health departments in the US have received federal and state funds to
develop response plans for biological and health emergencies that are naturally
occurring or the result of bioterrorism. Depending on the type of the biological
threat, health departments must be prepared to respond by coordinated interven-
tion within a time frame mandated by the Centers for Disease Control and Preven-
tion (CDC).This has led to the designation of disaster preparedness committees,
who have identified points of distribution (PODs), at which in the event of such
an emergency the population of the county can be supplied with vaccines and/or
prophylactic medication. However, assessing the feasibility of such a contingency
plan in general, and the placement of PODs in particular, constitutes a signifi-
cant challenge, as it requires that demographic data, traffic information, geographic
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layout, and POD capacities be taken into consideration. We have developed com-
putational tools that will aid the planning and assessment process and facilitate
immediate re-allocation of public health resources. This paper will highlight the
methodologies that have been developed to predict whether the existing road net-
work can support a specific POD placement and facilitate a county’s emergency
response strategies. Associated with the PODs are specific catchment areas deter-
mining the expected demand for each of the PODs. A corresponding road model
with base traffic, speed limits, number of lanes, and traffic counts allows for the
estimation of traffic feeding into each POD. The design of a feasible contingency
plan represents a multi-variate optimization problem that necessitates the use of
computational tools. These tools must be general enough to facilitate the planning
and validation process in different locations for different types of bioemergencies
and geographic locations and must be designed to be usable by policy makers and
public health experts.

2 Related work

Throughout history, diseases have threatened the world’s population. While his-
torically, naturally occurring events were of major concern, disaster preparedness
committees are now forced to also incorporate contingency plans for bioemergen-
cies inflicted by terrorists. The authors in [1] compare the public health officials as
first responders for bioterrorist attacks to first responders for conventional terrorist
attacks, such as policemen, firefighters, and paramedics. In [2], the authors claim
that “any small or large outbreak of disease should be evaluated as a potential
bioterrorist attack”. Recent events have shown that a public health event automati-
cally raises human suspicion, which became evident, when an Australian scientist
suggested that the swine flu was not naturally occurring, but produced in a lab.
The WHO, however, disagreed [3]. In recent years, people have become increas-
ingly aware of the fact that in order to generate good solutions for such complex
problems, interdisciplinary collaboration is important. In [4] the importance of this
collaboration is stressed, while indicating that public health itself is an interdisci-
plinary field. For early warning systems to be successfully implemented, clinicians
must work closely together with public health officials [5]. Not only the need for
collaboration, but also the necessity of having effective disease surveillance in
place, is emphasized in [6]. Additionally, a distinction between naturally occur-
ring disease outbreaks and bioterrorist attacks must be carefully evaluated using
disease characteristics with respect to geographic area, season, and mode of trans-
mission.

The use of GIS for public health events is not a novel approach. A well-known
example is John Snow’s famous cholera map of London published in 1855 [7],
which helped to identify a specific water pump as the cause for the outbreak. In
the past decades, however, the use of GIS in public health and epidemiology has
experienced a revival, making use of geographic information to improve public
health. A field study was conducted during a disaster preparedness exercise in
Montana with an emphasis on demonstrating the usefulness of GIS integration
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into emergency planning [8]. In North Carolina, GIS is already being deployed,
whereby the mobile GIS software ArcPad replaces the use of paper forms in order
to speed disaster relief [9]. Assessment teams use it on mobile devices to calculate
routes to survey locations and to facilitate the completeness of data entries. The
collected data can be directly uploaded into a database and therefore, eliminating
data re-entry.

Databases filled with public health and geographic data are being maintained at
public health authorities, and as early as in 1985 the role of the use of Computer
Science in the domain of public health has been acknowledged [10]. Now, com-
putational models are ubiquitous, modelling different diseases to support public
health officials in the development of intervention strategies, as demonstrated for
HPV in [11]. More recently, data mining of social media has been used to show
strong correlation between the Morbidity and Mortality Weekly Report (MMWR)
by the CDC and the occurrence of words related to influenza in blog posts [12].

3 Methodology

Given the POD locations, census data, road network information and traffic statis-
tics, models have been developed aiding public health officials to evaluate and
adapt contingency plans. This section outlines the steps necessary to build a frame-
work for such an analysis for a given geographic location.

3.1 Defining catchment areas

Based on existing POD locations, a county is divided into catchment areas. Each
of the catchment areas is pertinent to a single POD and defines the population that
the corresponding POD must serve. Using census block granularity, each census
block is collapsed into its geographic centroid, which allows for its representation
by a single point. Making use of these centroid locations, the distances between
the centroids C and PODS P are calculated and a centroid c ∈ C representing its
corresponding census block is assigned to a POD p ∈ P , if the distance between c
and p is smaller than the distance between c and any of the other PODs p′ ∈ P \ p.
This assignment can be expressed as follows:

∀c ∈ C : pod(c) = min(‖ c − p ‖)

where pod(c) takes a census block as an argument and returns the corresponding
POD. As a first approach, the Euclidean distance is used as the distance metric,
although other metrics, such as minimum road distance, minimum travel time,
and a weighted combination of different metrics can be considered in order to
account for various factors, including natural and unnatural boundaries (rivers,
lakes, mountains, walls, . . .). The resulting partitioning of the county resembles a
Voronoi decomposition, adjusted to be delineated by census block borders. This
approach is depicted in Figure 1. Figure 1(a) shows census blocks with their corre-
sponding centroids. The POD locations are marked by triangles. In Figure 1(b) the
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(a) Census blocks and PODs (b) Distance to all PODs (c) Catchment areas

Figure 1: Determining catchment areas.

process of finding the closest POD is illustrated, which leads to the partitioning of
the geographic space into catchment areas, as shown in Figure 1(c).

Note that the described approach is not limited to census block granularity,
but can be applied to different geographic entities. However, using census blocks
allows for estimating the population count within a catchment area with a rela-
tively fine granularity. By dividing a county into catchment areas, we have reduced
the problem of analyzing a geographic space with multiple PODs to the task of
evaluating a region allocated to a single POD. The traffic intensity is likely to
increase towards the PODs with the highest traffic volume close to the POD loca-
tion, and less traffic around the catchment area borders. In the following sections,
we describe how we make use of this property in order to estimate traffic demands.

3.2 Including the road network

Assuming different traffic densities as a function of distance, the POD can be rep-
resented by concentric rings surrounding the POD. Let k denote the number of
rings and dmax the point in the catchment area that is furthest away from the POD,
then the census blocks of a catchment area pertinent to a POD p are classified into
sets of rings as follows:

Ri =
{

c ∈ C | (i − 1)
dmax

k
<‖ c − p ‖≤ dmax

k

}

where i ∈ {1 . . . k}. Note that census block boundaries are always respected and
therefore, the rings are conforming to these boundaries. An example of such a divi-
sion into rings with k = 3 is illustrated in Figure 2. In Figure 2(a) the catchment
area with its census blocks and POD is shown. The resulting subdivision after the
ring assignment is depicted in Figure 2(b). It is obvious, that in order to travel to
the POD from ring Ri with i ∈ {1..k}, all Rj with j ∈ {1..i} have to be traversed.
This is illustrated in Figure 2(e).

Once the rings are computed, road network information is superimposed with
the amount of detail obtainable. Hence, minor roads might not be considered,
which does not represent a limitation to the model, as these roads mainly con-
tribute to local neighborhood traffic. For each of the rings, the intersection points
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Concentric (c) Crossing points

(d) Subsectors (e) Traffic flow graph

(a) Catchment area for one    (b)
          around POD

rings
POD

Figure 2: Subdividing catchment areas.

with the road network are computed (Figure 2(c)). These points can be considered
bottlenecks, as in order to reach ring i − 1 from ring i, they must be traversed.
Hence, these points provide a measure of traffic influx into the next inner ring. The
actual number of cars traversing these crossing points depends on the number of
people living in the census blocks of the rings, and the base traffic pertinent to the
surrounding areas. The latter will be addressed in the next section.

To determine the influx for each of the individual crossing points, the rings
are further subdivided. Analogous to the determination of the catchment areas,
all census blocks of a ring are assigned to the closest crossing point of ring i − 1
(Figure 2(d)). It should be noted that there is no subdivision for the inner ring R1,
as it contains the POD itself. Starting with the outermost ring Rk the population
of each subsector is added to obtain an estimate of the number of people crossing
into the next ring Rk−1. Parameters, such as the average number of people per car,
can be specified by public health officials to compare different assumptions and
evaluate the resulting scenarios. Once the traffic feeding into ring i−1 is estimated,
the crossing point is assigned this number and acts as a “super-centroid” for the
next iteration. The closer the rings are to the POD location, the higher the expected
traffic feeding into the crossing points. This conforms with the scenario we would
expect in the case of a real emergency.

The expected scenarios, however, are likely to differ depending on which time
of the day the emergency is announced. At night the population is assumed to con-
form with the spatial distribution as obtained from the census data. Nevertheless,
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during daytime, parts of the population are not in the census block they live in,
due to work, school, and other activities. Also, in city areas, one has to account for
additional population of the workforce from surrounding areas, who might not live
in the affected county. Hence, the time of the day of the announcement can play a
crucial role in the results of the analysis.

3.3 Modelling traffic flow

Once the expected distribution of the population is calculated, the base traffic can
be estimated and road network information can be integrated into the model. The
available information includes traffic counts, the number of lanes, and speed limits.
Traffic counts, however, are only available for a minor amount of the road segments
of the data set. Hence, traffic information must be interpolated for those segments,
for which no traffic counts are available. As mentioned above, some minor roads
are not included in the infrastructure description, and can consequently not be
considered as part of the road network. Traffic counts for major roads are available
in 15 minute intervals.

The methodology to estimate traffic counts is sufficiently generic to be applica-
ble to all roads in the road network. In the following we are assuming the average
length of a car lc to be 6 meters feet, the space between two cars ls to be 1 car
length per 16 km/h, and given the speed limit vmax and the number of lanes n, the
maximum capacities Cmax for a road segment can be calculated as

Cmax =
vmax

ls + lc
=

vmax(
vmax
16 + 1

) × 6 × 10−3 km

Cmax is a measure of how many cars can at most traverse a road segment. Using the
actual traffic counts we calculated the proportion of the maximum traffic capaci-
ties. This was done for different times of the day and allows us to estimate the
roadway traffic for any road segment with the given parameters.

Figure 3 shows the traffic count distributions over a day comparing proportions
of total daily counts for mid-week and weekend traffic. Specific traffic counts have
been obtained from the local department of transportation. Taking into account that
we consider different road segments and different dates, the standard deviation is
within reasonable limits. Comparing the graphs for the different days of the week,
two patterns have been observed that lead to the formulation of two distinct traf-
fic distribution classes, namely for weekdays and weekend days. The two classes
are shown in Figure 4. For both scenarios, a very small standard deviation can be
observed. The graphs represent the actual proportion Pc(t) of traffic counts aver-
aged over all road segments with available traffic counts for a given time interval,
which are calculated as

P (t) =
1

| S |
∑
s∈S

Cs
actual

Cs
max

where S is the set of all road segments with available traffic counts.
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(a) Traffic counts for Thursdays

(b) Traffic counts for Sundays

Figure 3: Traffic counts for a sample weekday and weekend day across all different
road segments with available counts.

Elaborate models of how to predict future traffic have been created and estimates
for the future are given based on current and historical data [13]. Also techniques
for estimating traffic data from single-loop or dual-loop detectors have been devel-
oped [14]. The Joint Research Center of the European Union published a document
discussing collection methods and applications of road traffic data, in which for
different European and US locations, traffic graphs for weekdays are shown [15].
Interestingly, the graphs exhibit the same general shape as depicted in Figure 4(b).

3.4 Traffic along the borders of the catchment areas

Although we assume most of the traffic to occur close to the POD locations and
away from the catchment area borders, we have to account for some cross-border
traffic. There are two cases that have to be distinguished: Either a catchment area
border shares its border with another catchment area, or it borders with a neigh-
boring county. In the first case we assume an overlap of width w. This allows for
modeling the traffic around the border, simulating that people living in areas with
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(a) Weekdays and weekend

(b) Weekdays

(c) Weekend

Figure 4: Traffic classes.
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(a) Estimated serving time (b) Entry and exit rates

Figure 5: PODAnalyzer.

more than one POD at a similar distance might choose any one of the PODs. For
catchment areas sharing borders with neighboring counties, additional incoming
traffic must be anticipated. If the neighboring county is following similar proce-
dures at the same time, the border traffic is treated similar to the situation of shared
catchment areas. However, if neighboring counties do not provide public health
services, the model needs to account for additional traffic. Further, it has been
observed that people tend to show more panic in case of unnatural disasters, which
can lead to an increase of the population to be served [16]. For instance, during a
chemical spill in Arkansas, an additional 32% decided to evacuate, although they
were instructed to seek shelter. Instances like this indicate that additional people
from the surrounding counties might enter the county to obtain vaccines or medi-
cation, although their area of residence is not affected.

3.5 Feasibility at the POD locations

Given that the road network can support the anticipated traffic, the feasibility of
the contingency plan at the POD locations themselves must be verified. A tool has
been developed that allows public health officials to specify parameters, such as
people per car, estimated serving time per car, number of booths per POD location,
and determines whether the population of a catchment area can be served within
a mandated time interval. The length of this interval varies with the type of the
underlying emergency, which will determine whether individuals are vaccinated
or merely provided medication. The interface of the tool is depicted in Figure 5,
showing estimated time requirements for each POD to serve its catchment area,
and the estimated and optimal entry and exit rates for cars into and out of the POD
locations.
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4 Summary

This paper briefly summarizes the methodology that has been developed to assess
the feasibility of specific responses to possible bioemergencies. In particular, com-
putational tools have been designed to gage the throughput of dispensing points, at
which the public can obtain vaccines or prophylactic medication. An integral part
of this analysis is the estimation of anticipated traffic in the road network during a
bioemergency, as this can drastically impede access to the PODs. In general, com-
putational models and tools offer public health officials means to evaluate the feasi-
bility and effectiveness of bioemergency contingency plans. Not only do they offer
functionality for finding adequate strategies responding to possible biothreats, but
they can also facilitate the reallocation of resources in response to emerging condi-
tions. For instance, in the event of a POD location being compromised, computer
tools can quickly adapt the original strategy to new circumstances. Often, data per-
tinent to such contingency plans is strictly confidential, including POD locations
and exact procedures and hence, field exercises cannot be conducted. The analyt-
ical study of response scenarios constitutes a complex optimization problem that
necessitates the development of new computational tools.
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