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Abstract 

It is a common phenomenon, especially, in tropical and subtropical regions that a 
standing soil slope fails during or immediately after heavy or prolonged rainfall 
events. A possible reason is that rainwater infiltration affects the pore-water 
pressure distribution in soil slope. While negative pore-water pressures add to 
the stability of soil slopes, positive pore-water pressures disrupt the existing 
stability. The changes in pore-water pressure in the soil are handled through 
infiltration/seepage analyses. Conventionally, numerical approach to seepage 
analysis is carried out by the mesh-based finite element software SEEP/W. More 
recent studies, however, indicate SEEP/W software yields appalling numerical 
oscillations near the wetting fronts as seepage progresses through unsaturated 
soils. In view of seeking an alternative approach, in this paper, a meshfree 
smoothed particle hydrodynamics (SPH) method was used to simulate 
infiltration into and seepage through unsaturated soil slope. The governing flow 
equation was developed by incorporating seepage force into the Navier-Stokes 
equation. Numerical examples were executed to test the capability of the SPH 
scheme in mimicking both infiltration and seepage. It was confirmed that the 
SPH method is versatile in that new physics of flow can be incorporated during 
program coding with ease. Besides, the simulation results indicate that SPH 
numerical approach can be considered as a better seepage analysis method as, 
unlike the mesh-based finite element, it does not suffer from mesh distortions 
when used for simulating large deformations - the case in landslides. 
Keywords: continuum mechanics, hydraulic conductivity, infiltration, large 
deformation, matric suction, meshfree numerical methods, seepage, SPH. 

a meshfree numerical approach 
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1 Introduction 

Analysis of infiltration and seepage through unsaturated soils plays a significant 
role in geotechnical hazards investigation. Geotechnical applications of seepage 
include, but not limited to, soil volume change predictions, contaminants 
transport through porous media, slope stability analysis, design of earth 
structures, such as earth dams, earth and rock fill dams, dykes, etc. Unsaturated 
soil slope instability (which is the target of the present paper), in the context of 
tropical and subtropical regions, occurs due to rainwater infiltration during heavy 
or prolonged rainfall events whereby the infiltrating rainwater disturbs the 
existing moisture equilibrium in the soil slope. The moisture disequilibrium is 
manifested mainly in terms of rise in the water content of the slope, thereby 
leading to reduction in the matric suction of the soil, which is thought to 
contribute to the stability of the soil slope. On the other hand, water content 
changes in unsaturated soil slopes due to rainwater infiltration lead to changes in 
the existing stresses. The change in the existing stresses in the soil will, in turn, 
cause the inevitable soil deformation and thereby soil slope instability.  
     Landslide predictions are usually made in terms of time and depth of failure 
so that residents residing nearby could get time to escape. To do so, knowledge 
of soil hydraulic conductivity and other relevant soil properties are required as 
fine-grained soils behave differently compared to the coarse-grained ones. As 
soil is naturally both heterogeneous and anisotropic, seepage analysis is usually 
carried out after making some sagacious assumptions. Therefore, in the current 
research, the soil under investigation is assumed to be heterogeneous and 
anisotropic, which, respectively, mean the soil engineering properties are both 
location and direction dependent. 
     Traditionally, seepage modelling is carried out, analytically, using Darcy’s 
law or flownet method of Terzaghi if respective conditions are met and, if not, 
numerically, using finite difference (FD) or finite element (FE) methods. 
However, the existing numerical methods (FD and FE) have inherent difficulties 
for landslide modelling because of mesh-distortion in case of FE method and 
because of inefficient use of regular grids for irregular geometries in the case of 
FD method. In the current research, the objective is to induce rainwater 
infiltration and to simulate seepage in unsaturated soil slope using the smoothed 
particle hydrodynamics (SPH) – a meshless numerical technique. 

2 Methodology: smoothed particle hydrodynamics 

Smoothed particle hydrodynamics (SPH) is a macroscopic numerical approach 
initially developed for simulating astrophysical phenomena, in 1977 [1] and, 
later, its applications were reported in different areas of research, including free 
surface flows, flow thorough porous media, etc. SPH meshless numerical method 
formulation is based on interpolation theory, and two essential concepts dictate 
its formulation: (i) kernel approximation (ii) particle approximation. 
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2.1 Kernel approximation 

2.1.1 Kernel approximation of field functions 
Kernel approximation of field functions is, in essence, the representation of the 
field function(s) in integral form. This is achieved by multiplying an arbitrary 
field functions with a smoothing kernel function. Therefore, a function A of a 
three-dimensional position vector x (or an estimate of the function A(x) at 
location x’) can be expressed in integral form: 

 


 ')'()'()( dxxxxAxA   (1) 

where, )'( xx  is the Dirac delta function, given by: 
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where,   is the volume of the integral containing x; 'x is a new independent 
variable. 
     In the above expression, the function A(x) is exact or rigorous, so long as the 
Dirac delta function is used and A(x) is continuous in  . In SPH, however, the 
Dirac delta function needs to be replaced by the smoothing (weighting) function 

),'( hxxW   in which case it will become an approximate representation of A(x). 

The SPH form of a function approximation (or kernel approximation) is, 
therefore: 

 


 '),'()'()( dxhxxWxAxA  (3) 

where, W is called the kernel or smoothing function; h is the smoothing length, 
and demarcates the influence area of the smoothing function. It needs to be 
noted, however, that eqn (3) gives an approximate representation of the integral 
of a field function as long as W is not a Dirac delta function; and, hence, the 
name kernel approximation. 

2.1.2 Kernel approximation of derivative of a function 
As equations of computational fluid dynamics problems are mostly PDEs of 
second degree [1], an appropriate approximation of the function derivatives is of 
profound importance. Accordingly, the kernel approximation of the divergence 
of the field function A(x) (for vector quantity) is, therefore: 

 


 '),'()'()( dxhxxWxAxA  (4) 

     After applying the divergence theorem, it is always the case that the 
divergence operation on the primed coordinate in eqn (4) is transferred to the 
gradient of the smoothing function in SPH numerical approach, which entails re-
writing eqn (4) as: 

 


 '),'()'()( dxhxxWxAxA  (5) 
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     Note that dot product is used in eqn (5). Similarly, the gradient of the 
function (for scalar quantity) is expressed as: 

 


 '),'()'()( dxhxxWxAxA  (6) 

     It can be said, therefore, that the spatial derivative of a field function can be 
evaluated from the values of the field function and the spatial derivative of the 
smoothing function. It should also be noted that the negative sign outside the 
integral sign in eqns (5) and (6) can be removed if the spatial derivative of the 
kernel function is taken with respect to x instead of the primed x (i.e., 'x ). 

2.2 Particle approximation 

2.2.1 Particle approximation of field function 
Particle approximation is another key operation in SPH numerical formulation; 
and is the means of transforming the continuous kernel approximation (in 
integral form) into the summation over all particles at the discrete points in the 
support domain. Particles carry mass, m, velocity, v, and other quantities specific 
to the given problem; and, are regarded as interpolation points, analogous to the 
grid nodes in mesh-based numerical methods. Therefore, equations that govern 
the evolution of fluid quantities are expressed as summation interpolants with the 
help of smoothing function. Eqn (9) can, then, be approximated in a summation 
form as: 
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where N is the total number of particles in the support domain; mj and ρj are the 
mass and density of particle j, respectively. And also, it should be noted that the 
infinitesimal volume dx’ is replaced by the finite volume jjmV  . 

     From eqn (7), it is possible to infer that the approximate value of a function at 
any discrete point can be obtained using the weighted average of those values of 
the function at all other particles in the influence domain of that particle.  
Following similar argument, the particle approximation for a function at particle 
(point) i may be written as in eqn (8) [1, 2]: 

 



N

j
jij

j

j
i hxxWxA

m
xA

1

),()()(


 (8) 

2.2.2 Particle approximation of gradient and divergence of field functions  
From eqn (8), it can be said that the continuous integral representation of the 
field function can be expressed in a discretized summation form, which is one of 
the favourable qualities of the SPH method as that renders the use of background 
mesh for numerical integration unnecessary [1]. Such conversion of the 
governing mathematical equations to a workable SPH numerical scheme, 
however, requires some fundamental techniques as discussed below. 
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     Transformation of the PDEs to the SPH discretized summation form, for 
instance, can be achieved by different ways. One way is with the help of 
integration by parts and Taylor series expansion. Suppose A is a scalar field 
function representing any physical variable and is defined in a given domain of 
interest. Its gradient can be formulated in a similar manner to eqn (8) as; 
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     Applying some basics of vector calculus, other forms of the gradient 
equations can also be formulated. For instance, putting ρ inside the gradient 
operator and applying the chain rule, eqn (9c) can be obtained. The introduction 
of mass and density into SPH particle approximation is to facilitate numerical 
approaches in hydrodynamic problems, where density is a key parameter. 
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And, re-writing in SPH particle approximation form; 
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     The third possible way of approximating the gradient of the field variable A is 
incorporating the SPH kernel and particle approximation on a gradient of the 
unity.  
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     And, obviously, the gradient of the unity is zero. Therefore, eqn (9e) can be 
re-written in the form containing both particles i and j as: 
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     Adding eqns (9a) and (9f) give another discretized (or discrete) form of the 
gradient of a field variable and is presented in eqn (9g). 
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     As it can be seen in eqn (9g), unlike in eqn (9a), the field variable difference 
is introduced into the discrete particle approximation. Eqn (9g) is preferred to 
eqn (9a), as, in such asymmetric forms, the presence of the variable difference 
can reduce errors arising from particle inconsistency problems [1]. As a fourth 
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approach, again inserting (

1

) in the gradient operator and applying the chain 

rule; 
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     And, the SPH equivalent of eqn (9h) is; 
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     Lastly, if one wishes to develop SPH particle approximation for 
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     In order to obtain a symmetric equation, the concept of a gradient on the unity 
can be applied here too. 
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     Adding eqns (9j) and (9k) to obtain a symmetric equation; 
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     And, from eqn (9h); 
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     Therefore, eqns (9a), (9d), (9g), (9i), (9j), and (9l) are all correct particle 
approximations of any scalar field variable A though the symmetric equations are 
thought to yield accurate results [1]. Following similar procedures as in the case 
of the gradient of a field variable, the divergence of the field variable can also be 
expressed in a particle approximation scheme by simply replacing the gradient 
with the divergence operator. 
     Note that the negative sign in eqn (5) has been dropped in the above 
equations, because, here, the spatial derivative of the smoothing function W is 
taken with respect to particle i, and not with respect to particle j. 

2.3 Smoothing functions 

Smoothing (also, called weighting) function is at the core of the SPH 
formulation. Spatial discretization of field variables is based on a set of points 
(particles, in SPH nomenclature), instead of grid nodes, which are commonly 
used in mesh-based numerical methods, such as FD and FE methods. It is, thus, 
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with the use of kernel interpolation that field variables, such as velocity, 
pressure, density, stress, etc., are approximated at any point (i.e., at any discrete 
point) in the support domain. Accordingly, there are several kernel functions 
being used in SPH numerical method. The piecewise cubic-spline function, 
commonly known as B-spline, suggested by Monaghan and Lattanzio, quoted in 
[1], is popular among SPH numerical modelers, such as SPHyscis code 
developers [3]. The same function is used here.  
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 for two and three dimensions, respectively.  

 
     The glaring shortcoming of spline functions is that their second derivative is a 
piecewise linear function, and, therefore, the stability properties can be inferior 
to those of smoother kernels [1]. This could, probably, be one of the reasons why 
the spatial first derivative of the cubic spline smoothing functions is widely used 
in the emerging literature.  

3 Applications: seepage modelling and simulation 

3.1 Governing equation 

The numerical software program SEEP/W is being used for modelling seepage 
through both saturated and unsaturated soils [4]. SEEP/W was developed using 
the h-based form of the Richards’ equation (RE) [5]. However, its reliability for 
numerical simulation of seepage through unsaturated soil slopes has become 
questionable. As noted in the works of Phoon et al. [5], Karthikeyan et al. 
undertook a thorough study of both one- and two-dimensional seepage through a 
porous media using SEEP/W, and came up with the conclusion that numerical 
oscillation popped up near the wetting front when water started to flow via 
unsaturated soils. The same study revealed also that, due to the numerical 
oscillations, unphysical results, such as drying of the soil close to the influx 
boundary, were obtained. Also, the Navier-Stokes (NS) equation has been widely 
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used to model flow through porous media by several researchers, for instance, 
Narsilio et al. [6], Jiang and Sousa [7], Morris et al. [8], and Pereira et al. [9]. 
The Navier-Stokes equation models flow at the micro or pore-scale level. Shao 
[10] investigated the interaction between water waves and porous medium using 
what he dubbed Navier-Stokes-type equation. NS equation was also used by 
Monaghan [11] for simulating free surface flow using SPH, with the exception 
that artificial viscosity term was used instead of the laminar viscosity. In a 
separate study Morris et al. [12] employed the same continuity and momentum 
equations to model incompressible low Reynolds number flows. 
     A similar formulation for the porous media could be carried out with the 
exception that the f values in NS equations may be accounted for a bit 
differently, as there will be a frictional force created when water flows in porous 
media. Following the work of Shao [10], the momentum equation for the flow 
through soils can be given as in eqns (11) and (12).  
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where, Vs  is seepage (also known as actual, interstitial) velocity vector, η is the 
porosity of the soil, K is the hydraulic conductivity tensor for the soil, γw is the 
unit weight of water, ρ is water density, g is gravity, P is pressure.  
     The last term in eqn (12) refers to the seepage force and is included in the 
momentum equation as an external drag force, as it acts to hinder water flow in 
the soil. Here, Darcy’s macroscopic law is employed. It is to be noted that 
Darcy’s velocity is soil porosity multiplied by the seepage velocity. The 
hydraulic conductivity tensor in the last term is expressed as a function of the 
pore-water pressure for unsaturated soils. In the current study, the Gardner’s 
equation [4] is used to express the K as a function of matric suction. 
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where, K and Ks are the hydraulic conductivity coefficients for unsaturated and 
saturated soils, respectively; (ua-uw), which is equal to the P value in eqn (12), is 
the matric suction; and a and n are constants. Values of a = 0.1 and n = 2 were 
used (see [4]) and hydraulic conductivity in the z-direction was assumed to be 
half of the hydraulic conductivity in the z-direction in the current research. And 
also, it is worth noting that SPH was originally invented for modelling flows of 
compressible fluids, and, thus its application to incompressible fluid flows needs 
some treatment to ensure density variation within a certain limit is maintained. In 
order to circumvent the difficulty of solving the pressure term for incompressible 
fluids, previous research works have resorted to using equation of state (EoS), as 
discussed in the next section.  
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3.2 Equation of state 

For the standard SPH for compressible fluids, particle motion is triggered by 
pressure gradient, which is normally calculated using equation of state (EoS). 
However, for the case of incompressible fluids, applying and solving the 
pressure using an incompressible fluid EoS dictates the adoption of small 
timestep [1]. This constraint has led to the adoption of artificial compressibility 
for solving the pressure gradient in the governing equation, the approach which 
is dubbed quasi-incompressibility by some researchers. Accordingly, Monaghan 
[11] modified the EoS suggested for water by Batchelor (also, cited in [11]), for 
describing sound waves and used it for simulating free surface flows, and the 
same equation has been frequently used by several emerging literatures. In this 
research too the same EoS is used as given in eqn (15). Moreover, Bui et al. [13] 
applied the same EoS in their formulation of SPH for soil mechanics with some 
successes. 
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where, γ is constant and is taken to be 7 for most circumstances, ρo is the 
reference density, B is a problem dependent parameter for limiting the maximum 
density gradient and, in most cases, can be taken as the initial pressure [1, 11]. 

3.3 Boundary treatment 

Boundary treatment entails special consideration in SPH, as particle deficiency 
near or on the boundary impairs full exploitation of the scheme. Monaghan [11], 
also reported in [1], suggested the use of ghost particles near or on the 
boundaries so that high repulsive force is created to prevent fluid particles from 
unphysically penetrating a solid boundary. Such penalty force approach to 
prevent interior fluid particles from penetrating the boundary is based on the 
Lennard-Jones molecular force approach. Another approach, in which the 
Hertzian contact theory was used, was also developed by Bui et al. [13]. For the 
current research we intend to use the Monaghan approach as given in eqn (15). 
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where, as in [1], a and b are taken to be 12 and 4, respectively, although 
Monaghan [11] proposed 4 and 2, respectively, with the conditions that a > b, 
always. He also suggested that a and b could also be taken as 12 and 6, 
respectively, without significant changes in the results. D is a problem dependent 
parameter and is usually taken to be the square of the largest velocity [1], and ro 
is selected to be approximately equal to the initial particle spacing. 
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3.4 Time integration 

Here, the predictor-corrector method is used. The predictor step predicts a new 
value, and the corrector step improves the accuracy of that value. The predictor 
step is undertaken only once for each of the iterations, while the corrector step is 
continued until the required level of accuracy is reached. There are several 
predictor-corrector methods though for the current paper we stick to the Euler 
predictor-corrector method (some prefer to name it modified Euler method). The 
basic idea behind the 2nd order Euler predictor-corrector method is that the 
solution for a new timestep is predicted using the explicit Euler method and the 
final solution is corrected by applying the trapezoid rule as follows. 

     ttf n
n

nn   ,*1  (16) 

        *1
1

1 ,,
2

1 


  n
n

n
n

nn tftf   (17) 

     For the sake of stability, the timestep, Δt, needs to be checked against several 
stability requirements. Detailed reading regarding these stability conditions can 
be made in [1, 11]. 

4 Numerical examples and discussions  

In this section numerical calculations and discussions will be made. 
Data used: 
Saturated hydraulic conductivity: 10-4 m/s 
Rainfall intensity (surface-flux)  : 10-4 m/s 
Porosity                                       :  0.6 
Slope angle                                 :  -40o 

Kinematic viscosity                    :  1 x 10-6 m2/s. 
Figure 1 shows the configuration of the slope physical model before and after the 
onset of infiltration. Figure 1 (a) depicts the initial slope configuration, the white 
colour representing the soil particles and the blue water particles. For the current 
simulation one main program with a number of subroutines were coded to 
develop the initial configuration. A separate set of program codes were also 
coded for inducing infiltration and running the seepage simulation. Different 
simulation examples were carried out for different timesteps and simulation 
times. The left and the bottom boundaries were treated as no-flow boundaries, 
the other sides were considered porous. In the coding, it was possible to record 
automatically, in a separate file, the positions of each particle, their respective 
velocities, densities and pore-water pressures. Those data files were used for the 
graphics using MATLAB. As can be noted from Figure 1 (b)–(d), the SPH 
scheme is a suitable means for capturing different aspects of infiltration into and 
seepage through unsaturated soils. 
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Figure 1: Example of SPH simulation for simulation time of approximately 
0.5 sec and a timestep of 0.02 sec. 

5 Conclusions 

In this paper, the SPH scheme was employed to simulate infiltration into and 
seepage through unsaturated soil slope. Only single-phase flow conditions were 
considered in the current study based on the evidences available in the emerging 
literature regarding the applicability of such cases for most engineering 
applications. Due to numerical instability, the soil slope receiving surface flux 
(i.e., infiltration) was limited to the crest of the slope, and the left, bottom and 
the inclined portions of the slope were considered regions of zero-surface flux. 
The governing flow equations for the current study were formulated by 
incorporating the frictional drag force during seepage through a porous media 
into the fundamental Navier-Stokes flow equations. Several numerical test 
problems were executed to check the capability of the new approach, yielding 
meaningful results, in our view. The simulation output for the current study 
included respective particle velocities, positions of each particle (which indicate 
depth of infiltration), pore-water pressures, and densities. Pore-water pressure 
data are indicative of slope instability/stability as reduction of the matric suction 
leads to loss of soil’s shear strength and hence slope instability. The 
experimental work to validate the numerical results is in progress. 
Acknowledging the need for further improvements, especially, with respect to 
numerical stability problems, it is fair to say that the current work has shed light 
regarding the potential capability of the SPH numerical model to simulate 
conditions leading to unsaturated soil slopes. 

(a) (b)

(c) (d)
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