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Abstract 

We propose a vertically-averaged 2D debris flow model based on the non-
Newtonian Bingham and Cross rheological formulations. In the Cross model, 
fluid viscosity changes continuously through the range of shear rates. The 2D 
model is based on the shallow water equations, where the internal friction losses 
are implemented using the Cross constitutive relations. The numerical method is 
based on a four-step, selective lumping, explicit time stepping scheme. We 
present preliminary tests for one dimensional and two dimensional dam break 
problems.  Model results show very good agreement with experimental data and 
analytical solutions in one dimensional cases. For the flow early stages, the 
numerical solution agrees better with the experimental data than with the 
analytical solution. However, in final stages, the numerical solution predicts that 
the fluid front advances more rapidly than the analytical solution and measured 
fluid front. The proposed 2D debris flow model provides very stable results even 
in the range of very low shear rates, where other discontinuous constitutive 
relations that use the yield stress may become unstable.  
Keywords: debris flow, Cross model, Bingham model, yield stress, finite 
elements. 
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1 Introduction 

Mud and debris flows can be characterized as a flowing sediment-water mixture 
driven by gravity. Rheological studies of mud at high enough solid 
concentrations have shown that it behaves as a very viscous, non-Newtonian 
fluid, exhibiting a yield stress as evidenced by an minimum depth needed for a 
uniform layer of mud to flow. Various rheological models have been proposed 
[2, 3, 5, 10], being the Bingham plastic model the most commonly used in 
practice. In simple shear, the stress and shear rate relation for a Bingham fluid is: 
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where τ  is the shear stress, yτ is the yield stress, µ   is the dynamic viscosity and 

γ�  is the shear rate. Many authors have proposed the Bingham rheological 
model to simulate debris flow. However, the hypothesis of a critical or yield 
shear stress may create instabilities in some model applications since, for close to 
zero shear rates, the Bingham model has a viscosity discontinuity where it 
changes from a finite value to infinity. This constitutes a phase change where the 
initially liquid fluid becomes a solid, rendering the fluid governing equations 
invalid. Although computationally this is not an insurmountable obstacle, it 
forces modelers to introduce not always well founded ad hoc assumptions for 
this low shear rate region. In this paper, we propose a 2D debris flow model 
based on the shallow water and sediment transport equations and the non-
Newtonian Cross rheological formulation. The main peculiarity of the Cross 
formulation is that it considers that the fluid viscosity changes continuously from 
a finite value at high shear rates to a very high one (but much less than infinity) 
as the shear rate tends to zero. Theoretically, the model does not consider a yield 
stress and therefore the liquid fluid phase is always retained. 
     In this paper, we expand on the present preliminary results presented by 
Martinez et al. [9] of the proposed model that aim to test the stability and 
performance of the model at low shear rates by comparing against experimental 
data and the analytical solution given by Huang and Garcia [6, 7]. 

2 Governing equations 

The model is based on the 2D shallow water equations that describe the free 
surface flow with the vertically averaged approximation and the sediment 
continuity equation in Cartesian coordinates: 
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where x and y are the horizontal coordinates, t is the time, η is the water surface 
elevation, H is the water depth, c  is the vertically averaged sediment 
concentration, u and v are the vertically averaged velocities in directions x and y 
respectively, g is the gravitational acceleration and Sfx and Sfy are the depth 
integrated stress terms that depend on the rheological model to be used. 

2.1 Implementation of rheological models 

Using the quadratic model postulated by O’Brien and Julien [10]  
2γζγµττ �� ++=

yxz
                                          (6) 

     The first two terms are referred to as the Bingham shear stresses and represent 
the internal resistance stresses of a Bingham fluid. The last term represents the 
sum of the dispersive and turbulent shear stresses, which depend on the square of 
the shear rate. 
     When the shear stress relationship is depth integrated, it can be rewritten in 
the following slope form: 
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Where Sy is the yield slope, Sv is the viscous slope and Std is the turbulent 
dispersive slope (O’Brien and Julien [10]). The yield slope is defined as: 
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     Assuming a vertical parabolic distribution for velocity u, the viscous slope is: 
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     For the quadratic term, O’Brien and Julien [10] suggest the use of Manning 
equation, yielding:  
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     The Manning coefficient of roughness N, is an empirically derived 
coefficient, which is dependent on many factors, including bottom surface 
roughness and sinuosity.  
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     Finally, for the quadratic rheological model of O’Brien and Julien, the depth 
integrated stress term is  
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     The quadratic model of O’Brian and Julien is combined with the Cross 
formulation,  

2γζγµτ �� +=
effxz

                                         (12) 

where µeff   is the effective viscosity, a continuous variable that changes from a 
large value at very low shear rates to the fluid dynamic viscosity at higher shear 
rates.  The effective viscosity can be conveniently defined in terms of the   
Bingham fluid parameters (yield stress and dynamic viscosity) as it is proposed 
by Shao and Lo [12]. 

γ

γµµ
µ

�

�

B
K

B
K

eff +
∞

+
=

1
0                                         (13) 

with 
y

B
K

τ

µ
0= ,  µµ =

∞
  and  µµ 310

0
= . 

     Assuming a vertical parabolic distribution for velocity u, 
H

u3
=γ� , the depth 

integrated stress term results in this case 
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     To determine the viscosity µ and yield stress yτ  as a function of the 

volumetric sediment concentration, exponential formulas, as those given by 
O’Brien and Julien [11], are used: 
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     For water-Kaolinite clay mixtures [8], α1=0.621E-3, β1=17.3, α2=0.002 and 
β2=34.2, µ is in Pa.s, yτ is in Pa and c  is a fraction of 1. 

     The shallow water equations and the sediment transport equation are solved 
by the Galerkin Finite Element method using three-node triangular elements. To 
solve the system of equations we propose a four-step time stepping scheme and a 
selective lumping method, as described by Garcia et al. [4]. This scheme 
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improves previous finite elements models, allowing larger time steps and 
enhancing its capability to simulate complex debris flow events without 
requiring an artificial diffusion term.  The use of triangular non structured grids 
gives the model a great flexibility to accommodate buildings and other obstacles 
usually present in urbanized alluvial fans. 

3 Results 

The first test problem represents flow from a source of finite size (area A and 
unit width), a dam break of mud-slide with initial triangular shape (height H0 and 
length L0) on a slope θ,  as shown in Fig. 1. The fluid is a Kaolinite suspension 
with Cv=13.05% and the flow is considered unsteady, gradually varied, and 
laminar. 

Figure 1: One-dimensional dam break on a incline plane. 

     The finite element numerical solution is compared with the analytical solution 
proposed by Huang and Garcia [6, 7] and with experimental data given in their 
work. Although the example is one dimensional, 2D elements are used to 
discretize the channel using a 2D mesh. 
     Fig. 2 shows the spreading rate for the following conditions: θ =11o, and 
A=24.7cm2 (L0 = 0.16 m).These results show that the numerical solution using 
Cross model is in very good agreement with the experimental data for early 
stages of the solution, where the analytical solution is not as accurate. As time 
increases, the fluid velocity decreases but the stoppage of the fluid is not totally 
reached with the numerical solution. After a certain time, the numerical solution 
tends to increase and deviate from the analytical solution. This is probably 
caused by the numerical treatment of the dry-wet interface. Ongoing work is 
addressing this issue. 
     Fig. 3 shows free surface profiles obtained using Cross formulation. Two 
different meshes are used, in the new mesh (NM) elements are three times 
smaller than those in the old mesh (OM). In addition, the selective lumping 
parameter (related with the finite element solution of the governing equations) is 
increased from 0.925 to 0.950. As it is depicted in the figure, the mesh 
refinement contributes to reduce the numerical diffusion and improves 
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substantially the solution in the advancing front. Increasing the selective lumping 
parameter also enhances the numerical solution, making it closer to the analytical 
solution. 
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Figure 2: Spreading relation.  

time = 2.0 s
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Figure 3: Free surface profiles. 

     Fig. 4 shows free surface profiles at time 2.3 s on wet slope, where a layer of 
fluid exists downstream from the mud-slide. The downstream layer has a height 
h2 equals to 0.5hy, where hy is the so called yield depth defined by 

θρ

τ

sing
y

hy =                                                     (17) 

 © 2008 WIT PressWIT Transactions on Engineering Sciences, Vol 60,
 www.witpress.com, ISSN 1743-3533 (on-line) 

66  Monitoring, Simulation, Prevention and Remediation of Dense Debris Flows II



time= 2.3 s
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Figure 4: Free surface profiles on wet slope. 

     The numerical solution obtained using Cross formulation is in very good 
agreement with the analytical solution [6]. 
     Fig. 5 is a dimensionless plot of the wave shock depth (hf/H) as a function of 
the shock coordinate (xf/L), where H and L are the initial height and length of the 
triangular fluid source. The results are for λ=0.04, λ=hy/L, and for different 
values of h2 [6]. The numerical solution shows an accurate approximation of the 
analytical solution in all the cases. 
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Figure 5: Kinematic-wave shock depth plotted as function of shock 
coordinate. 

     Fig. 6 shows the analytical results of a circular dam break on a horizontal 
plane, presented by Balmforth et al. [1]. The initial condition of the problem is 
h*=h/H=1 for r*=r/L≤1, where H and L are the initial height and radius of the 
circular, confined, source of fluid. The dimensionless time t* is defined as 

V
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where V is a characteristic velocity given by 
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     The results are for a Bingham number (dimensionless yield stress) B=0.15, 
with B defined as 

V

Hy
B

µ

τ
=                                                    (20) 

     This analytical solution is compared with results given by the Cross 
formulation (numerical solution) for the same two-dimensional problem. 
Comparing curves, it is noticeable that the spreading of the numerical solution is 
larger than the analytical solution at advanced times; however, results are closer 
at short times.  
     Preliminary analysis leads us to attribute this behaviour to inaccuracies of the 
wetting and drying method used in the model, since this factors may play an 
increasingly important role for smaller depths.  We are currently working on 
further model verifications and testing new wetting and drying algorithms to 
improve the model accuracy for large times.  
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Circular dam break. 

4 Conclusions 

In this paper, we propose a 2D finite element model to simulate debris flows based 
on the non-Newtonian Cross rheological formulation, where the fluid viscosity 
changes continuously from a finite value to a very high one (but much less than 
infinity) as the shear rate tends to zero. The 2D model is based on the shallow 
water equations, where the stress terms account for the bottom friction using 
Manning’s formula and the internal friction losses are implemented using the Cross 
constitutive relations. The numerical method is based on a four-step, selective 
lumping, explicit time stepping scheme, that solves the system of ordinary 
differential equations that results from the discretization of the 2D shallow water 
equations. We present preliminary tests for one dimensional and two dimensional 
dam break problems, comparing the model results with some experimental data 
and analytical solutions.  Model results show very good agreement with the 
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experimental data and analytical solutions in one dimensional cases. For the flow 
early stages, the numerical solution agrees better with the experimental data than 
with the analytical solution. However; in final stages, the numerical solution 
predicts that the fluid front advances more rapidly than the analytical solution and 
measured fluid front. The same results are observed in a 2D problem; however, 
experimental data to compare with is scarce. The proposed 2D debris flow model 
using Cross rheological formulation provides very stable results even in the range 
of very low shear rates, where other discontinuous constitutive relations that use 
the yield stress may become unstable. 
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