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Abstract 

The modelling of debris flow kinematics and mechanics is complex and involves 
non-linearity at both levels. Until now, the preferred approach in numerical 
modelling of debris flows is to solve the 1D equations with a Finite Difference 
method. In order to improve the present debris flow models, we implement a 
finite volume method stable for Courant numbers up to unity. Mass and 
Momentum equations are computed using a Roe-type Riemann solver and the 
MUSCL (Monotone Upwind Schema for Conservation Laws) approach is 
applied to obtain second order spatial accuracy. Different resistance laws are 
used for taking account the rheological behaviour of the fluid, considered as a 
single phase or by a liquid-solid mixture.  
     The scheme is validated and applied to a debris flow event in Japan. The 
results show important differences in precision when the proposed model is 
compared with other numerical models, using the same resistance laws. Results 
indicate that the Newtonian turbulent Voellmy fluid and Takahashi resistance 
flow laws better reproduce the front propagation than other rheological models.  
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1 Introduction 

Debris flow is a common phenomenon in mountain regions. It occurs when 
masses of poorly sorted sediments agitated and saturated with water surge down 
slopes in response to gravitational attraction. They are receiving the attention of 
international community because their occurrence frequency has dramatically 
increased in recent years. Identification of potential dangerous areas as well as 
remediation with engineering works are often used to mitigate debris flows 
effects. Since debris flows are episodic and happen with little warning, it is very 
important to count on simulation models. Numerical simulations have become an 
ideal approach for appraising the debris flow propagation.  
     Most of numerical approaches that have been developed include the use of 
finites differences [1], finites elements [2] or discrete/distinct element methods 
[3]. However, the use of models based on finites volume discretization is 
increasing in computational fluid dynamics due to their conservation properties 
and precision. Some applications in debris flow based on finite volume have 
been developed [4].  
     In this paper a 1D model that takes in account non-linearity is proposed. 
Shallow water equations, modified for including high slopes are used for 
expressing conservation of mass and momentum. Rheological behavior of the 
fluid is considered by using six different constitutive equations. The numerical 
model is a high resolution and non-oscillatory scheme based on the finite volume 
method. The scheme is validated for Dam-break problems comparing numerical 
results with experimental data and applied to a real debris flow event. 
Comparisons are made between front propagation velocities obtained using 
different resistances laws and with prediction from the numerical model 
proposed by Rickenmann and Koch [1]. 

2 Mathematical model 

2.1 Governing equations 

The Saint Venant equations for flow in a 1D channel with width variable and 
rectangular cross section and with bed slope θ are  
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where x is the spatial coordinate measured along the length of the channel, t is 
the time, A(x,t) the area of the flow cross section, V(x,t) the velocity, g the 
gravity acceleration, y the centroid depth of flow area, i the rate of 
erosion/deposition of the bed, b the width of the channel, S0 the bed slope (sinθ), 
Sf the bed resistance term and Fc the pressure force caused by the longitudinal 
width variations b(x,t) is defined by 
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with h(x,t) being the mean flow depth. 

2.2 Flow resistance laws 

Friction term was modeled using different flow resistance laws. Two different 
cases were considered assuming that the fluid is (a) a homogeneous single phase 
(Newtonian turbulent and Bingham laminar), (b) a mixture solid-liquid without 
erosion or deposition of the channel bed (Voellmy and dilatant inertial fluid) or 
(c) a mixture solid-liquid with erosion or deposition of the channel bed (Egashira 
model) 

2.2.1 Homogeneous single phase models 
For a Newtonian turbulent model Sf is obtained from  
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where n is the Manning’s roughness coefficient and Rh = A/P is hydraulic radius, 
P being the wetted perimeter.  
     For the Bingham plastic model: 
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where τ0 is the basal shear stress obtained as the solution of the cubic equation 
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where τB is the Bingham yield stress and µB the Bingham viscosity. 
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2.2.2 Solid-liquid mixtures models in non-deformable bed 
For a dilatant inertial fluid,  
 

23ξh
VV

S f =      (9) 

 
where ξ is a parameter accounting for grain and concentration properties in 
granular flows.   
     In the case of a Voellmy fluid, 
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where C and δ are the Chézy roughness coefficient and the internal friction angle 
respectively. 

2.2.3 Solid-liquid mixtures models in variable form bed 
When the bed was let to change, the friction term was modelled following 
Takahashi approach [5].  Depending on volumetric solid concentration, 
 

( )















>









−+









<

= 0.2c            

1sin

11
5
2

0.2c                                                      
49.0

2

2

2

h
s

l
B

h

f

gRcca
h

d

VV
Rgh

VVd

S

ρ
ρδ

λ

   (11) 

 
where d is the average diameter of solid particles, Ba = 0.042 an empirical 
constant, c the volumetric solid concentration and being λ expressed by 
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where c* is the bed volumetric solid concentration. Volumetric solid 
concentration c is obtained as Brufau et al. [4] from 
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where vc is given by 
 

( )




= *

*,max
c

cc
c D

v        
0
0

>
≤

i
i

    (14) 

 
being *

Dc is the volumetric concentration of deposited material. The rate of 
erosion/deposition i was obtained using the expression proposed by Egashira and 
Aschida and described by Brufau et al. [4]. 

3 Numerical model 

The 1D channel reach is defined by N control volumes of equal size ∆x. The 
time increment is ∆t. By using the mean value theorem and the divergence 
theorem, the governing equations represented by eqn (1) can be integrated in 
each control volume to get: 
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where FR and FL are the numerical flows in the right and left boundary of each 
volume of control and k+1 and k represent time levels t+∆t and t respectively. 
Second order time integration is obtained using the predictor-corrector method as 
proposed by Sanders [6].  

3.1 Predictor step 

In the predictor step areas and velocities are approximated by   
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The gradients are limited and prevent oscillations in the solutions witch are very 
common in second order accurate schemes.  For depth and velocity, gradients are 
estimated through an average function obtained using the superbee limiter [6]. 
Depth is extrapolated to the cell center where areas are computed. S0 is given by 
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sinθj while that Sf is obtained from eqns. (6-7,9-11). Since that Sf is estimated at 
the level k+1/2, a semi-implicit formulation is obtained for estimating velocity 
from Eq. (11). In the case of Newtonian turbulent model eqn. (17) is write as 
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Therefore, velocity is estimated solving a second degree algebraic equation 
(Rodríguez [7]). The same scheme is used for the others resistance laws less the 
Bingham model in which the coupled equation system defined by eqn (7) and 
eqn (8) is expressed in each cell and solved for τ0j and Vj. This is done using 
Newton-Raphson iterative technique (Rodríguez [7]). 

3.2 MUSCL extrapolation 

For extrapolation of velocity and depth to the left and right faces of the control 
volume, at time level k+1/2 MUSCL approximation is used. So, h and V are 
extrapolated and areas in each face of volume of control are estimated from the 
area function evaluated at each face. 

3.3 Corrector step  

In the corrector step, areas and velocities are estimated using eqn (2) and the 
expression   
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where numerical fluxes are computed at the faces of each volume of control. 
Numerical fluxes are evaluated by 
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where the correction term is evaluated using the matrix ˆ
UA  (Rodríguez [7]) 
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Quantities V̂ and â (wave celerity) are averaged in ROE sense and are 
computed following Brufau et al. [4]. Source terms are estimated in the same 
way as in the predictor step. 

3.4 Boundary conditions  

Ghost cells are defined at inlet and outlet of flow domain. For inlet boundary 
condition and subcritical flow, velocity is specified, area is extrapolated in first 
order using adjacent cell values and depth is calculated from area-depth 
relationship. Depth gradient is extrapolated to first order using adjacent cell 
values and velocity gradient is zero. For supercritical flow velocity and area are 
specified and both gradients are zero.  
     Velocity and area are extrapolated to first order at the outlet using adjacent 
cell values and gradients are zero for both supercritical and subcritical flow.  If 
area is specified at the outlet, velocity is extrapolated to first order from adjacent 
cell values. 

3.5 Stability conditions  

Since the scheme described above is designed for unsteady situations, the time 
step must be specified to advance the solution. The use of Courant-Friedrichs-
Lewy (CFL) criterion is an effective way of choosing an appropriate time step. 
For cases analyzed here C values were between 0.1 and 0.8. 

3.6  Model verification 

The model was applied to various problems in order to validate it. Classical dam-
break non-friction solutions as Ritter’s solution and flow over triangular cross-
section channel were reproduced for a channel with a dam at the middle. 
Simulations were conducted assuming a small fluid layer downstream of the dam 
position. Results proved to be non-dependent of the layer depth assumed. Also, 
friction cases were analyzed. In particular comparison with classical WES 
experiments was done obtaining good agreement. Details can be found in 
Rodríguez [7]. It is observed that the proposed model is able to reproduce both 
analytical and experimental flows.  

4 Numerical results 

Comparison between model simulations and field observations are made for a 
debris flow event in the Kamikamihori valley in Japan reported by Rickenmann 
and Koch [1]. Longitudinal profiles and channel width are presented in Fig. 1. 

 © 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 90,
 www.witpress.com, ISSN 1743-3541 (on-line) 

Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows  65



  

1400

1500
1600

1700

1800
1900

2000

0 500 1000 1500 2000 2500 3000

x (m)

El
ev

at
io

ns
, z

(m
)

1
0

 m

1
0

 m

1
1

5
 m

1
5

 m

10
10

10

10

1
0

 m

1
0

 m

1
1

5
 m

1
5

 m

10
10

10

10

0 m 1900 m 3000 m

1
0

 m

1
0

 m

1
1

5
 m

1
5

 m

10
10

10

10

1
0

 m

1
0

 m

1
1

5
 m

1
5

 m

10
10

10

10

0 m 1900 m 3000 m

 

Figure 1: Longitudinal profile and channel width of field case: Kamikamihori 
valley.  

     The model channel has a constant width of 10m down to the fan apex at 
x = 1.9 km. From this point it widens to a width of 15 m, at x = 2.0 km and 
further downstream there is a widening of 10 m per 100 m of longitudinal 
distance. The input hydrograph at x = 0 km has a maximum flow depth of 2.5 m, 
a constant inflow velocity of 6.5 m/s during 40 s. The total volume hydrograph 
(water and sediment) correspond to 6500 m3. After 40 s, input velocity is set to 
zero. 
     Numerical parameters were as follow. A reach with 2000 cells was built.  
∆x = 1.5 and Courant number C was fixed to 0.2. Rheological model parameters 
were adjusted in order to best reproduce the measured data on flow front velocity 
along the flow path. As in Rickenmann and Koch [1] an uncertainty margin of 
20% was assumed with regard to the measured velocities. 
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Figure 2: Comparison between observed and simulated velocities in real 
events. 

     It can be observed from Fig. 2 that front velocities are reasonably close to the 
observed ones for the turbulent, Voellmy and Takahashi models. When channel 
slope change (around 800 m from the starting point) Bingham model predicts 

Manning (n=0.12) 
Dilatant (ξ2=31) 
Voellmy (C2=120) 
Bingham plastic (τB=100  µB=650) 
Simplify Bingham (τB=100  µB=700) 
Takahashi (d=0.4) 
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front velocities lower than observed. Predictions from dilatant inertial model are 
far form observed velocities.  
     However, as is show in fig. 3a, predictions for this rheological model are very 
much closer to observed velocities using volume finite scheme that those 
predicted using the lagrangian central finite difference scheme used by 
Rickenmann and Koch [1]. In particular, Rickenmann and Koch model predict 
artificially high velocities at the beginning of motion. Similar results are 
obtained when resistance laws from Bingham plastic model is used (fig. 3b). The 
proposed model predicts velocities better than Rickenmann and Koch model, 
showing less dispersion with regard to observed velocities. In addition, Manning 
coefficient required by our model (0.12) is lower than is required by Rickenmann 
and Koch model (0.15) that is in agreement with field experience. 
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Figure 3: Comparison between predicted velocities using this model and 
Rickenmman and Koch model (a) dilatant inertial (ξ2 = 31 m-1/2 s-1), 
(b) Bingham plastic (τB = 100 Pa µB = 800 Pa s). 

     Since that the numerical nature of each model is different, these results 
indicate that it is very important to use numerical models with high precision. 
When non-linearity at motion equations and rheological models are present, 
precision of numerical solutions could be too low and predictions could be very 
far from actual values.    

5 Conclusions 

In this paper a numerical model that solves the 1D shallow water equations 
modified for including high slopes was developed. The model is based on the 
finite volume method and can consider constitutive equations for Newtonian 
turbulent or Bingham plastic fluids. 
     This model proves to be robust and does not present oscillations often found 
in second order methods. It was validated and was able to reproduce, analytical 
solutions and experimental data with very good precision. Numerical instabilities 
that appear when Bingham plastic rheological model is used were removed 
introducing a laminar bi-viscous model. 

This Model
R&K Model

 © 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 90,
 www.witpress.com, ISSN 1743-3541 (on-line) 

Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows  67



     When applied to a real event, better results were obtained with Newtonian 
turbulent model, Voellmy and Takahashi model. Other constitutive equations 
should be tested and extension to two-dimensional models should be done in 
order to achieve substantial progress. 
     When it is compared with Rickenmann and Koch model, using the same 
constitutive equations, both models show same trends but the proposed model 
get best results. It is indicative of the importance of use a robust numerical model 
to solve motion equations when non-lineal rheological models are employed. 
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