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Abstract 

This paper deals with a method using a specific class of neural networks whose 
learning phase is based on the Levenberg-Marquardt algorithm and which had 
been applied to the estimation of the traffic matrix (TM) of a large scale IP 
network. The neural network had been implemented with the help of the specific 
neural toolbox of the source software Matlab. Such neural networks are within 
the class of feed forward and recurrent types. The simulation tests have been 
processed on the available data base of the very reputed American observatory 
data base on the Internet of a very large scale IP network, the so-called Abilene 
network on both categories of neural networks. The simulated results using this 
method have been found to be very accurate as compared to one another. The 
static model converges rapidly but was less accurate in the estimation of the 
Traffic Matrix of such a kind of large IP System (the Abilene System) than the 
dynamic model which in this way earned the challenge of yielding a perfect 
estimation. 
Keywords: IP networks, Traffic Matrix (TM), neural networks (NN), Levenberg-
Marquardt learning algorithm, Traffic Matrix estimation, linear regression. 

1 Introduction 

For quantitative reasons, telecommunication operators are usually interested in a 
good knowledge of the values of the volumes of information that pass through 
their network versus time. These volumes are generally expressed in flow rates 
of information going through the different points and links that constitute the 
topology of their network. These links volumes are also known as charges of 
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information and are measured today with specific network protocols such as 
NetFlow from Cisco and Simple Network Manager Protocol (SNMP) in each 
link or point of presence (PoP) of the network and constitute themselves what we 
globally define as the traffic through the considered network. Essential 
information that they need is what we call the traffic matrix that indicates the 
volumes of the traffic in terms of flow rates between the nodes origin-destination 
since a given period of time. The direct measurement of this matrix is very hard 
usually because not all the points of the network are fed with information at a 
time, not all important nodes called routers are equipped with the necessary 
software and usually because the direct measurement is very expensive and can 
affect the quality of the service of the network if the operator is obliged to stop 
the network since the measurement is progressing. So, the researchers oriented 
this measurement to estimation by developing many methods and techniques to 
estimate this traffic matrix. These techniques were categorized into three major 
classes such as; deterministic approach which consider this estimation as an 
optimization problem. In  that  way, Goldschmidt  [1]  and  Eum  et  al.  [2]  used  Linear  
Programming (LP) to maximize the global sum of the weights of the flow rates 
through the links of the network and considered this function as an objective one. 
Others, [3, 4], of the same class, use the minimization of the distance of a given 
traffic matrix integrated to a real one; statistical approaches which consider the 
measurements of the different link charges as random variables measured since 
continuous intervals of time and the flows between the origin-destination pairs as 
parameters of a statistical model. Hence, Tebaldi and West [5] utilize a Bayesian 
approach when Medina et al. [6] perform the maximum likelihood function used 
in Expectation Maximization (EM) approach. Other methods in this second class 
use a Gaussian statistical model or alternatively a Poisson statistical one; 
dynamic approach whose principle is to reroute the traffic flows by changing the 
weights of links. This concept will be responsible in the generation of new links 
charges. By applying repeatedly new weights to redirect and reroute the traffic 
flows, it will be then possible to solve the problem of this estimation. This last 
approach requires finding out a set of links that will be able to reroute the flows 
under the constraint that the rerouted flows will not cause any saturation in the 
network. To determine the link weights that can satisfy this condition, some 
authors, like in [7–9], have used heuristic approaches. Finally, another approach 
which can be classified as more close to the third class is the neural network 
approach. In this category, Jiang et al. [10, 11], Vardi [12, 14] and Eum et al. 
[13] developed a method called back propagation for traffic matrix estimation 
(BPTME) based on a specific class of artificial neural network which consisted 
in modifying the weighing coefficients (wi) to estimate the traffic matrix. We, in 
our work, have developed a multi-layer neural network technique for the 
estimation of the traffic matrix (TM) of large scale IP Network (Abilene) based 
on the Levenberg-Marquardt [15] algorithm and carried out a comparison to 
validate this estimation with various previous methods.  
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2 Network background 

2.1 General background 

As cited above, the traffic matrix represents the traffic between the different 
Origin-Destination pairs of the network simply denoted OD. The traffic flows go 
through physical links that connect the network nodes between them and the 
concatenation of the links of an OD flow path constitutes the route. All of the 
routes being crossed by the OD flows are represented by a routing matrix that 
contains only ones (“1”) and zeros (“0”). Let A= (ai,j) be this matrix, if the link 
between the origin I and the destination j does exist then ai,j=1 and if the link 
does not ai,j= 0.  Let n be the number of nodes and l the number of physical links 
that connect the nodes one another, then the number of OD pairs is N= n2. Let 
X(t) be the traffic matrix of N x M dimension so that M represents the number of 
time samples. We, then, define the traffic matrix of the charges at the nodes by Y 
(t) which has an l x M dimension and the routing matrix by A which has an l x N 
dimension. The relation that links the traffic matrix and this of the charges is 
simply given by the following expression: 

 ܻሺݐሻ ൌ .ܣ ܺሺݐሻ (1) 

     The problem is to estimate the traffic matrix ܺሺݐሻ from the links charges ܻሺݐሻ 
and the routing matrix	ܣ. This problem is an ill addressed problem because the 
number of the unknown variables is greater than the number of the known data 
(	݊ଶ  ݈		).  

2.2 Topology of the IP system 

The studied large IP system is the well known American large IP network called 
Abilene network whose topology is given in Figure 1. 
 

 

Figure 1: Abilene network topology (US large scale IP/network). 

     This network consists of twelve (12) principal nodes which distribute 
information through 144 OD (Origin-Destination) pairs and through 54 links that 
connect the nodes one another. Data are collected through measurements that 
have been processed from 01-03-2004 to 07-03-2004 (that is to say for one 
week) every five minutes a day. So, we got 288 samples a day and 2016 samples 
a week.  
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3 Neural network background 

3.1 Dynamic neural network 

Because of certain properties, we deliberately have chosen this model of neural 
networks. This kind of neural network is known as a model having unity 
feedbacks in its hidden layers [15–17]. Figure 2 depicts such a recurrent model. 
 

 

Figure 2: Dynamic Neural Network structure with 3 layers and one output. 

     Let wi,i be the weights of the different recurrent connections, then, the 
following equations can be derived from the depicted above neural network 
dynamic model: 

 ݊ଵ	ሺݐሻ ൌ ሺݓଵ ൈ ሻሻݐሺ  ሺݓଵ,ଵ ൈ ݐሺሺ െ 1ሻሻ  1; (2) 

 		݊ଶ	ሺݐሻ ൌ ሺݓଶ,ଵ ൈ ݊ଵ	ሺݐሻሻ  ሺݓଶ,ଶ ൈ ݊ଵ	ሺݐ െ 1ሻሻ  1; (3) 

 ݊ଷ	ሺݐሻ ൌ ሺݓଷ,ଶ ൈ ݊ଶሺݐሻሻ  ሺݓଶ,ଶ ൈ ݊ଶሺݐ െ 1ሻሻ  1; (4) 

n3(t) from equation (4) is the final output of the dynamic network as shown in 
figure 2 [16, 17]. Moreover, the model that we conceived comprises two hidden 
layers and one output layer. It also contains a prior input layer. The neurons 
activation functions are linear and the first hidden layer comprises 16 neurons 
whereas the second hidden layer consists in 13 neurons. Each input in the input 
layer is connected to all the input neurons of the first hidden layer which 
themselves are simultaneously connected between them recursively (same layer) 
and to all of the input neurons of the second layer. The outputs of the neurons of 
the second layer are all connected by a summation process to one input neuron of 
the final output layer (n3(t)). 

3.2 Learning principle  

The learning principle of a neural network is to minimize in the sense of the last 
mean squares the cost function. Since the neural networks are not linear systems, 
then the cost function obtained by solving the gradient to zero is not linear either. 
This fact makes the parameters estimation more complicated. Another problem is 
the existence of local minimums in the cost function. As this function is not a 
quadratic one, it has consequently several minimums as shown in Figure 3. 
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Figure 3: Cost function representation with local and global minimums of a 
neuron with two weighted inputs. 

     The cost function minimization of a non linear model involves the use of 
iterative methods that modify the model [15–17]. Each operation of the iterative 
process is denoted as an epoch of the learning process and requires two major 
steps namely: 
  Gradient cost function evaluation in order to approach a minimum of the 

function. 
 Function parameters modification versus the gradient in order to 

approach such a fixed minimum. 

3.2.1 Data pre-treatment 
Once the data are available, we should proceed to a pre-treatment [16] that 
allows the modeling to be as efficient as possible. In anyway, the minimum pre-
treatment consists in normalizing and centralizing the data as in such a way that 
we can avoid any oversized variables and make the learning algorithm most 
efficient one. Therefore, a simple pre-treatment consists in changing the 
variables to central variables. So, we get the following: 

′ݑ  ൌ
௨ି〈௨〉

ௌೠ
 ; (5) 

where 〈ݑ〉 is denoting the mean of the considered quantity	ݑ, which can be 
estimated by: 

〈ݑ〉  ൌ
ଵ

ே
∑ ݑ
ே
ୀଵ ,  (6) 

and ܵ௨ the standard deviation of the quantity	ݑ	is then defined by: 

 ܵ௨ ൌ ට ଵ

ேିଵ
∑ ሺݑ െ ே〈ݑ〉
ୀଵ ሻଶ (7) 

3.2.2 Levenberg-Marquardt learning algorithm 
The Levenberg-Marquardt algorithm (MLA) helps to find out a solution to the 
minimization of a cost function when this function depends on several variables. 
The LMA is a powerful algorithm compared to the Gauss-Newton or the 
gradient algorithms in terms of convergence and stability [15]. Furthermore, the 
LMA algorithm modifies the weights of the neural network by moderating them 
with the value ∆ݓ given in equation (8): 
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ݓ∆  ൌ ሺܬ்ܬ   (8) ்݁ܬ	ሻିଵܫߤ

where:   w; is the weights vector of the neural network, 
                I; is the identity matrix, 
                J; is the Jacobi matrix of (PxM) xN size, 
  ,The combination coefficient and   ( T ); the transpose operand 	;ߤ                
               	݁;		 The error vector. 
 
     Thus, P is the number of the considered samples; M the number of the outputs 
of the neural network and N is the number of the weights. The elements of the 
vector e are calculated using the following equation: 

 ݁ௗ ൌ ݀ െ   (9)

where 	݀ and 	 are respectively the desired output and the current output of 
the neural network, at respectively the output m for the input sample p. The 
matrices forms of J and e are given by the following equalities: 
 

ܬ  ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
డభభ
డ௪భ

							
డభభ
డ௪మ

				…						
డభభ
డ௪ಿ

డభమ
డ௪భ

								
డభమ
డ௪మ

			…					
డభమ
డ௪ಿ…											…						…						…		

డభಾ
డ௪భ

							
డభಾ
డ௪మ

		…					
డభಾ
డ௪ಿ		…										…								…							…		

డುభ
డ௪భ

							
డುభ
డ௪మ

			…					
డುభ
డ௪ಿ

	
డುభ
డ௪భ

								
డುభ
డ௪మ

		…					
	డುభ
డ௪ಿ		…									…						…							…		

డುಾ
డ௪భ

							
డುಾ
డ௪మ

		…						
డುಾ
డ௪ಿ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 ,  (10a) 

 

 ݁ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
݁ଵଵ
݁ଵଶ
…
݁ଵெ
…
݁ଵ
݁ଶ
…
݁ெے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 , (10b) 

 
     The different steps of the algorithm are first concerned by the introduction of 
the available data samples for the learning and the training of the neural network. 
After what, the Jacobi matrix and the error vector e are calculated following 
(10a) and (10b). Then, the weights are modified using equation (8) that yields the 
new refreshed values of the weights that will better control and better converge 
and stabilize the neural network. Then the LMA proceeds to a better controlled 
learning. To learn more, one should refer to [15–17]. 
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4 Traffic matrix estimation 

Once the neural network has learnt the adequate model at the corresponding OD 
(Origin-Destination) of the IP network pair that’s to say to the optimal weight 
adjusting, it is enough to introduce at any time of the considered week only the 
states of the links charges that had been measured by the SNMP (Simple 
Network Management Protocol) to obtain the links charges at any OD pair of the 
IP network. Since the traffic variations between the OD pairs present different 
variations functions, it is necessary to assign to each OD pair the most 
appropriate model in order to obtain the optimal minimum error. 

5 Results  

In this section, we present some results obtained from our simulations operated 
on specific OD pairs of the Abilene IP network for the estimation of the traffic 
matrices.  
 
                                 (a)                                                             (b) 
 

 
 
 
                                                                 (c) 

 

Figure 4: (a) Traffic flow estimation OD#24, Red= real, Blue=estimated, (b) 
A zoom on the green area, (c) Linear regression of TMreal on the 
TMestimated  for OD#24. 
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                                        (a)                                                 (b) 

 
 

                                                                                 (c) 

 

Figure 5: (a) Traffic flow estimation OD#92, Red= real, Blue=estimated, (b) 
A zoom on the green area, (c) Linear regression of  TMreal on the 
TMestimated  for OD#92. 

                                     (a)                                                      (b) 

 
 

                                                                 (c) 

 

Figure 6: (a) Traffic flow estimation OD#1, Red= real, Blue=estimated, (b) A 
zoom on the green area, (c) Linear regression of TMreal on the 
TMestimated  for OD#1. 
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6 Discussion and conclusion  

Our work had been focused on the implementation and testing of two types of 
neural networks based on LMA learning algorithm namely the static feed 
forward neural network and the dynamic one. Unfortunately, because of template 
limitations it was not possible to detail the first category and thanks to its 
exceptional precision in the estimation of the traffic matrix of the IP system, we 
deliberately have chosen to detail the second category (dynamic). The static 
neural network also comprises 54 inputs and three layers, except that in this case, 
the first hidden layer consists in 9 neurons and the second in 17 neurons and the 
model is not recurrent. The output layer is the same with the dynamic model and 
the neural activation functions are linear either. 400 samples were used in our 
simulations and the criterion adopted to stop the learning process was that of the 
‘Early-Stopping’ [15], which is based on the validation error. The learning is 
stopped when this error starts to rise up from a global minimum. 
     In Figure 4(a), an estimation of the traffic flow in OD#24 is performed and 
compared at a time in the same figure with the real flow with an MSE error of 
about 4.81 10-2. Figure 4(b) represents a zoom of the time interval [600-800] that 
shows a good correlation between the real flow and the estimated one with the 
mean of the LMA (NN). A linear regression of the estimated values on the real 
values had been performed and displayed in Figure 4(c) to validate the 
estimation process by this mean. Indeed this figure shows a good correlation 
between both parameters with a regression coefficient of about 0.95804. Same 
procedure and displays are applied to OD#92 (Figures 5(a)–5(c)) and OD#1 
(Figures 6(a)–6(c)). In the case of OD#92, we have found approximately similar 
results compared to those of OD#24. Whereas, in the case of OD#1 and with a 
dynamic neural network model, the coefficient of regression is equal to one and 
we can observe that the precision of the estimation is perfect and the estimated 
values of the traffic matrix coincide exactly with the real values without any kind 
of error. 
     This fact was also observed in other cases of OD pairs and compelled us to 
conclude that the dynamic model of the neural network based on the LMA 
learning is the best which earned the challenge. In most of the time, this neural 
network structure was able to track the real matrix dynamics and that the linear 
regression between the estimated values and the real values served as testimony 
of the perfect estimation. Other validation parameters can be implemented to 
validate the proposed method. We personally have carried out three of them such 
as: time convergence; the algorithm complexity; and the estimation efficiency 
which will certainly be reported in another paper. Work is in progress to attain 
this goal. 
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