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Abstract

In this paper, the support of a Boolean function is used to establish some
algebraic properties. These properties allow the degree of a Boolean function to
be obtained without having to calculate its algebraic normal form. Furthermore,
some algorithms are derived and the average time computed to obtain the degree
of some Boolean functions from its support.
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1 Introduction

Boolean functions are used in cryptographic applications such as block ciphers,
stream ciphers, hash functions [1–3], and coding theory [4–6], among others. One
of the basic requirements relative to the Boolean functions used in stream ciphers
is that they allow to increase the linear complexity [7–9], which is obtained if these
functions have a high algebraic degree.

Boolean functions can be represented in many ways; the most commonly used
are the algebraic normal form or the truth table. The algebraic normal form of a
Boolean function provides its degree directly, but not its weight; on the other hand,
if we know the truth table, then we know its weight, but do not know its degree.

In this paper we introduce some properties that allow us to compute the degree
of a Boolean function without computing all the coefficients of its algebraic normal
form.
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The rest of the paper is organized as follows. In Section 2 we introduce some
basic definitions and notations that are used hereafter. In Section 3, we introduce
some linear algebra properties that allow us to improve the algorithm introduced
in Section 2. Section 4 is devoted to numerical results and finally, in Section 5 we
present the conclusions.

2 Preliminaries

We denote by F2 the Galois field of two elements, 0 and 1, with the addition
(denoted by ⊕) and the multiplication (denoted by juxtaposition). For any positive
integer n, it is well-known that Fn

2 is a linear space of dimension n over F2 with
the usual addition (denoted also by ⊕). We denote by Span {u1,u2, . . . ,uk} the
linear subspace of Fn

2 generated by the vectors u1,u2, . . . ,uk ∈ F
n
2 . If we denote

by i the binary expansion of n digits of the integer i, for i = 0, 1, 2, . . . , 2n − 1,
then

F
n
2 = {i | 0 ≤ i ≤ 2n − 1}.

With this notation, the standard basis of Fn
2 is {2n−1,2n−2, . . . ,22,2,1}.

For a vector u ∈ F
n
2 we denote by S(u) the linear subspace of Fn

2 spanned by
the vectors of the standard basis of Fn

2 corresponding to the nonzero components
of u; that is, if we assume that ui1 , ui2 , . . . , uik , with 1 ≤ i1 < i2 < · · · < ik ≤ n,
are the nonzero components of u = (u1, u2, . . . , un), then

u = 2n−i1 ⊕ · · · ⊕ 2n−ik and S(u) = Span
{
2n−i1 , . . . ,2n−ik

}
.

We say that k, that is, the number of nonzero components of vector u, is the weight
of u. It is evident that dimS(u) = w(u).

If F ⊆ F
n
2 and a ∈ F

n
2 , then a ⊕ F = {a ⊕ u | u ∈ F}. When F is a k-

dimensional linear subspace of Fn
2 we say that a⊕ F is the k-dimensional affine

subspace of Fn
2 passing through a in the direction of F .

For 1 ≤ k < n, we consider that Fn
2 = F

k
2 × F

n−k
2 . So, if u ∈ F

n
2 , then

u = (v,w) with v ∈ F
k
2 and w ∈ F

n−k
2 . In particular, if a ∈ F

n−k
2 , we also

denote by a the vector (0,a) ∈ F
n
2 .

A Boolean function of n variables is a map f : F
n
2 −→ F2. The set of all

Boolean functions of n variables is denoted by Bn; it is well known that Bn, with
the usual addition of functions (that we also denote by ⊕), is a linear space of
dimension 2n over F2, so |Bn| = 22

n

. The complementary function of f ∈ Bn is
the Boolean function 1⊕ f given by (1⊕ f)(x) = 1⊕ f(x) for all x ∈ F

n
2 .

If f ∈ Bn, we call truth table of f (see, for example, [10, 11]) the binary
sequence of length 2n given by ξ = (f(0), f(1), . . . , f(2n − 1)). We call weight
of f , denoted by w(f), the number of 1s of the truth table of f .

The support of f , denoted by Supp (f), is the set of vectors of F
n
2 whose

image by f is 1, that is, Supp (f) = {a ∈ F
n
2 | f(a) = 1} and therefore, w(f) =

|Supp (f)|. Obviously, f is the null function if and only if Supp (f) = ∅ and then
w(f) = 0; analogously, f is the constant function 1 if and only if Supp (f) = F

n
2

and, in this case, w(f) = 2n.
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It can be checked that if f, g ∈ Bn, then Supp (f ⊕ g) = Supp (f)Δ Supp (g) ,
where Δ denote the symmetric difference of sets and, as a consequence,

w(f ⊕ g) ≡ w(f) + w(g) (mod 2).

In general, if fj ∈ Bn, for j = 1, 2, . . . ,m, then

Supp

⎛
⎝

m⊕
j=1

fj

⎞
⎠ =

m

Δ
j=1

Supp (fj) (1)

and, therefore,

w

⎛
⎝

m⊕
j=1

fj

⎞
⎠ ≡

m∑
j=1

w(fj) (mod 2). (2)

Furthermore, Supp (1⊕ f) = F
n
2 \ Supp (f) and w(1 ⊕ f) = 2n − w(f).

We say that f is balanced if w(f) = 2n−1. It is evident that f is balanced if
and only if 1⊕ f is balanced.

Now assume that x = (x1, x2, . . . , xn) where each xj , for j = 1, 2, . . . , n,
is a binary variable. If f ∈ Bn, then we can write f(x) uniquely as (see, for
example, [5, 10–13])

f(x) =
⊕
u∈F

n
2

µf (u)x
u (3)

where µf (u) ∈ F2, and if u = (u1, u2, . . . , un), then

xu = xu1
1 xu2

2 · · ·xun
n with x

uj

j =

{
xj , if uj = 1,

1, if uj = 0.

Expression (3), where each term xu is called a monomial, is known as the
Algebraic Normal Form (ANF) of f(x). Note that µf is also a Boolean function
of n variables, called the Möbius transformation of f .

For f ∈ Bf , we call degree of f , denoted by deg (f), the maximum of the
degrees of the monomials of its ANF. So,

deg (f) = max{w(u) | µf (u) = 1}. (4)

Obviously, deg (1⊕ f) = deg (f) and deg (1) = 0. As it is usual we say that
deg (0) = −∞.

We say that f ∈ Bn is an affine function if deg (f) = 1; in this case expression
(3) becomes

f(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn

with aj ∈ F2, for j = 0, 1, 2, . . . , n and al 
= 0 for some l = 1, 2, . . . , n. In
particular, if a0 = 0, we say that f is a linear function. It can be checked that any
affine function is balanced, although the converse is not true.
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Furthermore, if f ∈ Bn and for all a ∈ F
n
2 we consider ga ∈ Bn defined by

ga(x) = f(x⊕ a), then deg (ga) = deg (f), for all a ∈ F
n
2 , and it is not difficult

to see that
Supp (ga) = a⊕ Supp (f) , for all a ∈ F

n
2 .

The following theorem is a reformulation of a well-known result for people
working in coding theory (see [14, Theorem 1, page 372]).
Theorem 1: If f ∈ Bn, then the coefficients µf (u) of the ANF of f can be
computed as

µf (u) =
⊕

a∈S(u)

f(a), for all u ∈ F
n
2 . (5)

As a consequence of the previous result we have the following corollary.
Corollary 1: Let f ∈ Bn.

1. Assume that u ∈ F
n
2 . The monomial xu is in the ANF of f if and only if

|Supp (f) ∩ S(u)| ≡ 1 (mod 2).

2. deg (f) = max{w(u) | u ∈ F
n
2 and |Supp (f) ∩ S(u)| ≡ 1 (mod 2)}.

Let u = (1, 1, . . . , 1) ∈ F
n
2 . Since S(u) = F

n
2 , from Corollary 1.1 we have that

the degree of a Boolean function f ∈ Bn is n if and only if w(f) is an odd number.
As another immediate consequence of Corollary 1 we have the following

algorithm that computes the degree of the Boolean function whose support is a
given set.
Algorithm 1: Assume that F is a subset of F

n
2 and let f ∈ Bn such that

F = Supp (f). This algorithm computes deg (f).
1. If |F | is odd, then deg (f) = n. Go to step 4.
2. For u ∈ F

n
2 compute w(u) and |F ∩ S(u)|.

3. deg (f) = max{w(u) | u ∈ F
n
2 and |F ∩ S(u)| ≡ 1 (mod 2)}

4. End.
It is evident that the number of Boolean functions of n variables whose support

has an odd number of elements is 22
n−1. So, exactly half of the Boolean functions

of n variables have degree n and, for such functions, determining their degree from
their support is immediate (see step 1 of Algorithm 1).

In an earlier paper [15] we introduced the following results that we quote here
for completeness.
Theorem 2 (Theorem 5 of [15]): Let f ∈ Bn such that |Supp (f)| is an even
number. If

⊕
a∈Supp(f)

a = 0, then deg (f) ≤ n− 2.

Theorem 3 (Theorem 7 of [15]): Assume that f ∈ Bn. If 1 ≤ k < n, then

f(y,x) =
⊕
b∈F

k
2

( ⊕
a∈S(b)

fa(x)

)
yb (6)

where fa ∈ Bk, for a ∈ F
k
2 , satisfies fa(x) = f(a,x). Furthermore,

1. Supp (fa) = {v ∈ F
n−k
2 | (a,v) ∈ Supp (f)},
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2. Supp
(⊕

a∈S(b) fa

)
=Δa∈S(b) Supp (fa), for all b ∈ F

k
2 ,

3. deg (f) = maxb∈F
k
2

{
deg

(⊕
a∈S(b) fa

)
+ w(b)

}
.

The above results allow us to establish the following algorithm to determine the
degree of any f ∈ Bn from Supp (f).
Algorithm 2 (Algorithm of [15]): Assume that we know Supp (f) for a given
f ∈ Bn. This algorithm provides deg (f).

1. If |Supp (f)| is odd, then deg (f) = n. Go to step 5.
2. Let s =

⊕
a∈Supp(f) a.

3. If s 
= 0, then deg (f) = n− 1. Go to step 5.
4. Let maxdeg (f) = n − 2 be the maximum value that deg (f) can take and

assume that k = 1.
(a) For b ∈ F

k
2 do the following:

i. Let gb =
⊕

a∈S(b) fa and obtain Supp (gb) according to parts
1 and 2 of Theorem 3.

ii. If |Supp (gb)| is odd, then deg (gb) = n− k. Go to step 4(a)vi.
iii. Let sb =

⊕
a∈Supp(gb)

a.
iv. If sb 
= 0, then deg (gb) = n− k − 1. Go to step 4(a)vi.
v. In other case, let maxdeg (gb) = n−k−2 the maximum value

that deg (gb) can take.
vi. End for.

(b) If maxdeg (f) = maxb∈F
k
2
{deg (gb) + w(b)}, then deg (f) =

maxdeg (f). Go to step 5.
(c) In other case, do maxdeg (f) = maxb∈F

k
2
{deg (gb) + w(b),

maxdeg (gb) + w(b)}, increase k in one unit and go to step 4a.
5. End.

3 Some linear algebra properties

In this section we introduce some results that allow us to improve Algorithm 2
introduced in the previous section.

The following result establishes that any k-dimensional linear subspace of Fn
2

(or the complementary set of any k-dimensional linear subspace of F
n
2 ) is the

support of a Boolean function of n variables with degree n− k.
Theorem 4: Assume that 1 ≤ k ≤ n. If F or F

n
2 \ F is a k-dimensional linear

subspace of F
n
2 , then there exists f ∈ Bn such that deg (f) = n − k and

F = Supp (f).
PROOF: Firstly, assume that F is a k-dimensional linear subspace of Fn

2 . Clearly,
the map f : Fn

2 → F2 given by

f(x) =

{
1, if x ∈ F,

0, if x /∈ F,

is a Boolean function of n variables whose support is F .
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Assume that n−k+1 ≤ l ≤ n and that the ANF of f(x) contains the monomial
xi1xi2 · · ·xil ; then, by Corollary 1.1,

∣∣F ∩ Span
{
2n−i1 ,2n−i2 , . . . ,2n−il

}∣∣ ≡ 1 (mod 2).

Nevertheless, since

dim
(
F ∩ Span

{
2n−i1 ,2n−i2 , . . . ,2n−il

})

= dimF + dimSpan
{
2n−i1 ,2n−i2 , . . . ,2n−il

}

− dim
(
F + Span

{
2n−i1 ,2n−i2 , . . . ,2n−il

})

≥ k + l − n ≥ 1,

necessarily
∣∣F ∩ Span

{
2n−i1 ,2n−i2 , . . . ,2n−il

}∣∣

= 2dim(F∩Span{2n−i1 ,2n−i2 ,...,2n−il}) ≡ 0 (mod 2).

So, we have a contradiction. Therefore, the ANF of f(x) does not contain any
monomial of degree l and, consequently, deg (f) ≤ n− k.

Now assume that {b1, b2, . . . , bk} is a basis of F and complete such basis, with
the vectors of the standard basis, to obtain a new basis

{
b1, b2, . . . , bk,2

n−i1 ,2n−i2 , . . . ,2n−in−k
}

of F
n
2 . Clearly F ∩ Span

{
2n−i1 ,2n−i2 , . . . ,2n−in−k

}
= {0} and, by

Corollary 1.1, the ANF of f(x) contains the monomial xi1xi2 · · ·xin−k
; so

deg (f) ≥ n− k.
Now, from this inequality and the previous one, we have that deg (f) = n− k.
On the other hand, if G = F

n
2 \ F is a k-dimensional linear subspace of Fn

2 ,
then, from the above part, there exists g ∈ Bn such that deg (g) = n − k and
G = Supp (g). Let f ∈ Bn such that f = 1 ⊕ g. Clearly, deg (f) = deg (g) and
Supp (f) = F

n
2 \ Supp (g); that is, deg (f) = n− k and F = Supp (f).

Note that as a consequence of this theorem, any [n, k] binary code is the support
of a Boolean function of n variables of degree n− k (see, for example, [6, 16, 17]
when the authors construct Boolean functions with some properties using linear
codes).

Next result establishes that Theorem 4 also holds if we change “linear subspace”
by “affine subspace”.
Corollary 2: Assume that 1 ≤ k ≤ n. If F or F

n
2 \ F is a k-dimensional affine

subspace of F
n
2 , then there exists f ∈ Bn such that deg (f) = n − k and

F = Supp (f).
PROOF: Firstly, assume that F is a k-dimensional affine subspace of Fn

2 . Then
F = a ⊕ G with G a k-dimensional linear subspace of F

n
2 and a ∈ F

n
2 \ G.

Therefore, by Theorem 4, there exists g ∈ Bn such that deg (g) = n − k and
G = Supp (g).
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Now, let f ∈ Bn such that f(x) = g(x ⊕ a) for all x ∈ F
n
2 . It is evident that

deg (f) = n− k and Supp (f) = a⊕ Supp (g) = a⊕G = F .
On the other hand, it G = F

n
2 \ F is a k-dimensional affine subspace of Fn

2 ,
then, from the above part, there exists g ∈ Bn such that deg (g) = n − k and
G = Supp (g). Let f ∈ Bn such that f = 1 ⊕ g. Clearly, deg (f) = deg (g) and
Supp (f) = F

n
2 \ Supp (g); that is, deg (f) = n− k and F = Supp (f).

As an immediate consequence of Theorem 4 and Corollary 2 we have the
following remark.
Remark 1: Assume that f ∈ Bn.

1. If |Supp (f)| = 2 and 0 ∈ Supp (f) (respectively, 0 /∈ Supp (f)), then
Supp (f) is a 1-dimensional linear subspace (respectively, affine subspace)
of Fn

2 and consequently, deg (f) = n− 1.
2. If |Supp (f)| = 2n − 2 and 0 /∈ Supp (f) (respectively, 0 ∈ Supp (f)),

then F
n
2 \ Supp (f) is a 1-dimensional linear subspace (respectively, affine

subspace) of Fn
2 and consequently deg (f) = n− 1.

The converse of Theorem 4 is not true in general. Nevertheless, if k = n, then
F = F

n
2 is the support of the constant function f(x) = 1 whose degree is 0.

Furthermore, if k = n − 1, then the converse of Theorem 4 also holds as we can
see in the following result.
Theorem 5: Assume that F ⊆ F

n
2 . Then F or Fn

2 \ F is an (n − 1)-dimensional
linear subspace of Fn

2 if and only if there exists f ∈ Bn such that deg (f) = 1 and
F = Supp (f).
PROOF: If F or F

n
2 \ F is an (n − 1)-dimensional linear subspace of F

n
2 , by

Theorem 4, there exists f ∈ Bn such that deg (f) = 1 and F = Supp (f).
Conversely, let f ∈ Bn such that deg (f) = 1 and F = Supp (f). On the one

hand

f(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn

for some a0, a1, a2, . . . , an ∈ F2, with al 
= 0 for some l = 1, 2, . . . , n, and
clearly

S = {(u1, u2, . . . , un) ∈ F
n
2 | a1u1 ⊕ a2u2 ⊕ · · · ⊕ anun = 0}

is an (n − 1)-dimensional linear subspace of Fn
2 . On the other hand, it is easy to

see that S = F , if a0 = 1, and S = F
n
2 \ F , if a0 = 0.

It is also possible to get a similar result to Theorem 5 considering affine
subspaces.
Corollary 3: Assume that F ⊆ F

n
2 . Then F or Fn

2 \ F is an (n− 1)-dimensional
affine subspace of Fn

2 if and only if there exists f ∈ Bn such that deg (f) = 1 and
F = Supp (f).

This result may not be true if dimF = k 
= n − 1, because 2n − 2k =
2k(2n−k − 1) is not a power of 2.

The following example shows how we can use the above results to improve the
process described in the above section.
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Example 1: Let f ∈ B5 such that

Supp (f) = {2,3,8,9,16,20,22,23,25,26,27,28,30,31}.
Note that |Supp (f)| = 14 and

∣∣F5
2 \ Supp (f)

∣∣ = 18, so neither Supp (f) nor
F
5
2 \ Supp (f) can be a linear subspace nor an affine subspace of F5

2.
Since |Supp (f)| is even and

2⊕ 3⊕ 8⊕ 9⊕ 16⊕ 20⊕ 22⊕ 23⊕ 25⊕ 26⊕ 27⊕ 28⊕ 30⊕ 31 = 0,

from Theorem 2, deg (f) ≤ 5 − 2 = 3. Now, according to part 3 of Theorem 3,
we have that

deg (f) = max{deg (f0) , deg (f0 ⊕ f1) + 1}
with f0, f1 ∈ B4 such that

f0(x2, x3, x4, x5) = f(0, x2, x3, x4, x5),

f1(x2, x3, x4, x5) = f(1, x2, x3, x4, x5),

and, from part 1 of Theorem 3,

Supp (f0) = {2,3,8,9}, (7)

Supp (f1) = {0,4,6,7,9,10,11,12,14,15}.
Therefore,

Supp (f0 ⊕ f1) = Supp (f0)ΔSupp (f1)

= {0,2,3,4,6,7,8,10,11,12,14,15}. (8)

In addition, since 2⊕ 3⊕ 8⊕ 9 = 0 and

0⊕ 2⊕ 3⊕ 4⊕ 6⊕ 7⊕ 8⊕ 10⊕ 11⊕ 12⊕ 14⊕ 15 = 0,

from Theorem 2,

deg (f0) ≤ 4− 2 = 2 and deg (f0 ⊕ f1) ≤ 4− 2 = 2

and, therefore deg (f) ≤ max{2, 2 + 1} = 3.
It is easy to check (see expressions (7) and (8) that none of the sets Supp (f0),

F
4
2 \ Supp (f0), Supp (f0 ⊕ f1) and F

4
2 \ Supp (f0 ⊕ f1) can be linear subspaces

of F4
2. Nevertheless

Supp (f0) = 2⊕ {0,1,10,11} = 2⊕ Span {1,10} ,
F
4
2 \ Supp (f0 ⊕ f1) = {1,5,9,13} = 1⊕ {0,4,8,12} = 1⊕ Span {4,8}

are affine subspaces of dimension 2. So, by Corollary 2,

deg (f0) = 4− 2 = 2 and deg (f0 ⊕ f1) = 4− 2 = 2

and, therefore deg (f) = max{2, 2 + 1} = 3.
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Finally, we modify Algorithm 2 to check, when the cardinal of the support of
the function we are considering is a power of 2, if that support is a vector or affine
subspace.
Algorithm 3: Assume that we know Supp (f) for a given f ∈ Bn. This algorithm
provides deg (f).

1. If |Supp (f)| is odd, then deg (f) = n. Go to step 7.
2. If |Supp (f)| = 2 or |Supp (f)| = 2n− 2, then deg (f) = n− 1. Go to step

7.
3. If |Supp (f)| is a power of 2, for example 2r (with r ≥ 2), check if Supp (f)

is a linear or affine subspace. If this is the case, then deg (f) = n− r. Go to
step 7.

4. Let s =
⊕

a∈Supp(f) a.
5. If s 
= 0, then deg (f) = n− 1. Go to step 7.
6. Let maxdeg (f) = n − 2 be the maximum value that deg (f) can take and

assume that k = 1.
(a) For b ∈ F

k
2 do the following:

i. Let gb =
⊕

a∈S(b) fa and obtain Supp (gb) according to
parts 1 and 2 of Theorem 3.

ii. If |Supp (gb)| is odd, then deg (gb) = n−k. Go to step 6(a)viii.
iii. If |Supp (gb)| = 2 or |Supp (gb)| = 2n−k − 2, then deg (f) =

n− k − 1. Go to step 6(a)viii.
iv. If |Supp (gb)| is a power of 2, for example 2r (with r ≥ 2),

check if Supp (gb) is a linear or affine subspace. If this is the
case, then deg (gb) = n− k − r. Go to step 6(a)viii.

v. Let sb =
⊕

a∈Supp(gb)
a.

vi. If sb 
= 0, then deg (gb) = n− k − 1. Go to step 6(a)viii.
vii. In other case, let maxdeg (gb) = n−k−2 the maximum value

that deg (gb) can take.
viii. End for.

(b) If maxdeg (f) = maxb∈F
k
2
{deg (gb) + w(b)}, then deg (f) =

maxdeg (f). Go to step 7.
(c) In other case, do

maxdeg (f) = max
b∈F

k
2

{deg (gb) + w(b),maxdeg (gb) + w(b)},

increase k in one unit and go to step 6a.
7. End.

4 Numerical results

For a given n the number of Boolean functions of n variables is 22
n

. For different
values of n (with 8 ≤ n ≤ 14) we obtained, on a standard personal computer,
randomly 1000 subsets of Fn

2 ; that is, 1000 supports of Boolean functions of n
variables. For these supports we compute the degree of the corresponding Boolean
function by computing the ANF from expression (5) and using Algorithms 1, 2
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Table 1: Times obtained in the computation of the degree of a Boolean function of
n variables from its support

n ANF Algorithm 1 Algorithm 2 Algorithm 3

8 0.0075 0.0748 0.0033 0.0038

9 0.0229 0.1489 0.0059 0.0069

10 0.0696 0.3564 0.0132 0.0159

11 0.2151 0.8105 0.0278 0.0348

12 0.7766 1.7892 0.0527 0.0767

13 −−− 5.0492 0.1172 0.2177

14 −−− 9.4359 0.2360 0.5370

Table 2: Times obtained in the computation of the degree of a Boolean function of
n variables whose support is a linear subspace

n Algorithm 2 Algorithm 3

8 0.0036 0.0004

9 0.0069 0.0007

10 0.0151 0.0015

11 0.0324 0.0036

12 0.0714 0.0087

13 0.1761 0.0196

14 0.4998 0.0542

and 3. Columns 2, 3, 4 and 5 of Table 1 show the average times (in seconds)
we obtained in each case. For n = 13, 14 we have not enough memory in our
computer to obtain the ANF. In general, Algorithm 2 is faster than Algorithm 3.
Nevertheless, if the supports considered are linear subspaces, then Algorithm 3 is
much faster than Algorithm 2. Table 2 shows the average times (in seconds) we
obtained to compute the degree of the Boolean functions corresponding to 1000
linear subspaces of Fn

2 for different values of n.

5 Conclusions

In this paper we present some properties of the support of a Boolean function that
allow us to obtain the different terms of the algebraic normal form. In particular,
when we know the support of a Boolean function, we can obtain its degree without
computing its algebraic normal form. For example, if f(x) is a Boolean function
of n variables, we prove that the degree of f is n if and only if the support of f
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have an even number of elements; note that it is very easy to check this property;
in fact, half of the Boolean functions have degree n. Furthermore, if the support of
a Boolean function of n variables is a k-dimensional linear or affine subspace of
F
n
2 , then we obtain that its degree is n− k.
As a consequence of these properties, we also introduce different algorithms to

compute the degree of a Boolean function from its support, without computing its
ANF, and present some numerical results using these algorithms.
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