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Universitat d’Alacant, Spain

Abstract

Protocols for authenticated key exchange allow parties within an insecure network
to establish a common session key which can then be used to secure their
future communication. In this paper we introduce a protocol for distributed key
agreement over a noncommutative ring with a large number of noninvertible
elements. This protocol uses polynomials with coefficients in the center of the
ring. We also present the necessary steps for recalculating the shared secret key
when a new user joins the system, or when a user leaves the system.
Keywords: secure communications, key exchange, noncommutative ring, multicast
protocol.

1 Introduction

The classical systems of cryptography all suffer about the well-known key
distribution problem. This is the problem of establishing a private channel by
means of which the sender and receiver of messages can exchange the key current
in use. Diffie and Hellman [1] addressed this problem in their seminal paper in
1976. The security of this protocol is based on the problem of computing discrete
logarithms in the multiplicative group of a finite field.

Most of the public key cryptosystems and public key exchange protocols are
based, from the point of view of its security, on the difficulty to solve some number
theory problems over finite commutative algebraic structures. Some efficient
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attacks have been proposed for many of the well-known protocols in the last
decades. For example, Odoni et al. [2] propose the group of matrices over a
finite field as base group for Diffie–Hellman key exchange; however, this model is
cryptanalyzed by Menezes and Wu [3] using eigenvalues theoretic properties.

With the main objective to avoid the attacks over commutative structures,
different models have been proposed in recent years. In 2007, Cao et al. [4] present
a general key exchange protocol, whose security is based on the difficulty to
solve the Symmetric Decomposition Problem over a noncommutative ring, using
polynomials.

Traditional communication modes have been one-to-one or unicast, and one-to-
all or broadcast. Among these two extremes we find multicast, the targeting of a
single data stream to a select set of receivers, which may or may not include the
sender. Therefore, we can say that multicasting is the ability to transmit a single
stream to multiple subscribers at the same time.

There are three fundamental types of IPv4 addresses: unicast, broadcast, and
multicast. A unicast address is designed to transmit a packet to a single destination.
A broadcast address is used to send a datagram to an entire subnetwork. A
multicast address is designed to enable the delivery of datagrams to a set of hosts
that have been configured as members of a multicast group in various scattered
subnetworks. Network-level IP multicast was proposed over a decade ago (see, for
example, [5, 6]).

With the main objective to avoid the attacks over commutative structures,
Climent et al. [7] study the ring End(Zp ×Zp2), for a prime p, and prove that it is
isomorph to the ring Ep whose elements are 2×2 matrices, with entries in the first
row belonging to Zp and the entries in the second row belonging to Zp2 . Using
this ring and the arithmetic implemented over it, some key exchange protocols
are presented in [8, 9], using polynomials which coefficients are elements of the
center of the ring. One of these protocols based on the noncommutative ring Ep

was cryptanalyzed by Kamal and Youssef [10]. This cryptanalysis is based on the
existence of a large number of invertible elements in Ep, when p is large enough.

To avoid this weakness Climent et al. [11] introduce an extension E(m)
p of Ep

that maintains the main properties of Ep. In particular, it can not be embedded in
a ring of matrices over a commutative ring. And most importantly, the number of
noninvertible elements in E(m)

p is very large when m is large compared with p.
The rest of the paper is organized as follows. In Section 2 we recall some

properties of the ring E(m)
p . In Section 3 we introduce a multicast communication

protocol initially defined over any noncommutative ring R, based on key
exchanges developed by Climent et al. [8]. The implementation of the multicast
protocol is performed over the ring E(m)

p , due to its characteristics that make it
safe to known attacks. In Section 4 we describe the process to join or leave the
group and in Section 5 we give an example for a system with 4 users. Finally, we
present our main conclusions in Section 6.
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2 The ring E
(m)
p

Climent et al. [11] proved that the set

E(m)
p =

{
[aij ] ∈ Matm×m(Z) | aij ∈ Zpi if i ≤ j,

and aij ∈ pi−j
Zpj if i > j

}

is a noncommutative unitary ring with addition and multiplication given by

[aij ] + [bij ] =
[
(aij + bij) mod pi

]
,

[aij ] · [bij ] =
[(

m∑
k=1

aikbkj

)
mod pi

]
,

respectively. That is, the addition and multiplication of the elements of E(m)
p is

analogous to the addition and multiplication of m × m matrices with entries in
Z, with the particularity that the entries in the ith row are reduced modulo pi, for
i = 1, 2, . . . ,m. So, the mull matrix and the identity matrix are the additive and
multiplicative identities ofE(m)

p . As we mentioned earlier in Section 1, the number
of noninvertible elements in E(m)

p is very large when m is large compared with p.
For example, for p = 7 and m = 2, 4, 8, 16, 32, the number of noninvertible
elements is about 26.53%, 46.02%, 70.86%, 91.51% and 99.28% respectively
(see [11]).

Moreover, this ring is not an integral domain. So it is not a left nor a right
Euclidean ring and, consequently, the ring of polynomials with coefficients in
E

(m)
p is not Euclidean.
The center of this ring plays an important role in the protocol that we will

introduce in Section 3 and it is characterized as

Z
(
E(m)

p

)
=
{
[aij ] ∈ E(m)

p | aij = 0 if i �= j,

and aii =
i∑

r=1

pi−rui−r with ui−r ∈ Zp

}
.

So,
∣∣Z(E(m)

p )
∣∣ = pm. Furthermore, Z

(
E

(m)
p

)
is not an Euclidean ring.

3 A multicast protocol over E
(m)
p

The communication model we propose in this multicast protocol over E(m)
p is

based on the IP multicast framework. We need to perform communications in a
restricted group, where all the components (members or users) of this restricted
group will manage all rekeying operations by themselves.
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Steiner et al. [12] introduce two new protocol that enhances the extension of the
Diffie–Hellman key exchange for rekeying. Moreover, one of them, widely known
as CLIQUES, is used for the same authors [13] for rekeying in Dynamic Peer
Groups.

Before starting to describe the details of the protocol, we need to introduce the
following notation for some sums:

σ(j, 1, i) =

i−1∑
j=1

j and δ(j, 1, i, l) =

i−1∑
j=1

j �=i−l

j.

So let us assume that the set of users is given by {U1, U2, . . . , Uh}. Then, users
agree to use the noncommutative ring E(m)

p . Furthermore, note that if we consider
f(x), g(x) ∈ Z

(
E

(m)
p

)
[x] and M ∈ E

(m)
p , we have that

f(M)rg(M)s = g(M)rf(M)s, for all positive integers r and s, (1)

although E
(m)
p is not commutative. This property allows us to establish the

following protocol.
Protocol 1: Let us assume that M ∈ E

(m)
p and K0 = N ∈ E

(m)
p \ Z

(
E

(m)
p

)

are public. Every user Ui, for i = 1, 2, . . . , h chooses a polynomial fi(x) ∈
Z
(
E

(m)
p

)
[x] and a pair of positive integers ri and si. Then (ri, si, fi(x)) is the

private key for the user Ui.
1. User U1 computes the element K1 of E(m)

p given by

K1 = f1(M)r1K0f1(M)s1 . (2)

User U1 sends K1 to user U2.
2. User U2 computes the elements K2 and K3 of E(m)

p given by

K2 = f2(M)r2K0f2(M)s2 ,

K3 = f2(M)r2K1f2(M)s2 . (3)

User U2 sends to user U3 the 3-vector of elements in E(m)
p given by

(K1,K2,K3) .

3. User U3 computes the elements K4, K5 and K6 of E(m)
p given by

K4 = f3(M)r3K1f3(M)s3 ,

K5 = f3(M)r3K2f3(M)s3 ,

K6 = f3(M)r3K3f3(M)s3 . (4)

16  Data Management and Security

 
 www.witpress.com, ISSN 1743-35  (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17



User U3 sends to user U4 the 4-vector of elements in E(m)
p given by

(K3,K4,K5,K6) .

4. In general, for i = 4, 5, . . . , h− 1, user Ui computes the elements of E(m)
p

Ki+δ(j,1,i,l) = fi(M)riKδ(j,1,i,l)fi(M)si , for l = 1, 2, 3, . . . , i− 1,

Ki+σ(j,1,i) = fi(M)riKσ(j,1,i)fi(M)si . (5)

User Ui sends to user Ui+1 the (i+ 1)-vector of elements in E(m)
p given by

(
Ki−1+δ(j,1,i,1),Ki+δ(j,1,i,1),Ki+δ(j,1,i,2),

. . . ,Ki+δ(j,1,i,i−1),Kσ(j,1,i+1)

)
.

5. When user Uh receives the h-vector
(
Kh−2+δ(j,1,h−1,1),Kh−1+δ(j,1,h−1,1),Kh−1+δ(j,1,h−1,2),

. . . ,Kh−1+δ(j,1,h−1,h−2),Kσ(j,1,h)

)
. (6)

he/she computes the elements of E(m)
p given by

L
(h)
1 = fh(M)rhKh−2+δ(j,1,h−1,1)fh(M)sh , (7)

L
(h)
l = fh(M)rhKh−1+δ(j,1,h−1,l−1)fh(M)sh ,

= fh(M)rhKδ(j,1,h,l)fh(M)sh , for l = 2, 3, . . . , h− 1, (8)

L
(h)
h = fh(M)rhKσ(j,1,h)fh(M)sh . (9)

User Uh sends to every user the (h − 1)-vector
(
L
(h)
1 , L

(h)
2 , . . . , L

(h)
h−1

)
of

elements in E(m)
p .

6. Finally, when every user Ui, for i = 1, 2, . . . , h − 1, receives the (h − 1)-
vector

(
L
(h)
1 , L

(h)
2 , . . . , L

(h)
h−1

)
, he/she takes the (h − i)th entry, L(h)

h−i, and
computes the element

Si = fi(M)riL
(h)
h−ifi(M)si . (10)

User Uh denote by Sh the element L(h)
h , i.e., Sh = L

(h)
h .

Next theorem establishes that the shared secret by all users is L(h)
h .

Theorem 1: With the notation of Protocol 1, it follows that

S1 = S2 = · · · = Sh−1 = Sh. (11)
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PROOF: Assume that i = 1, 2, . . . , h. From expressions (2)–(5) and (7)–(9), and
taking into account expression (1), it follows that

L
(h)
h−i =

⎛
⎜⎜⎝

h∏
j=1
j �=i

fj(M)rj

⎞
⎟⎟⎠K0

⎛
⎜⎜⎝

h∏
j=1
j �=i

fj(M)sj

⎞
⎟⎟⎠ . (12)

Now, from expressions (10) and (12) and taking into account expression (1)
again, it follows that

Si =

⎛
⎝

h∏
j=1

fj(M)rj

⎞
⎠K0

⎛
⎝

h∏
j=1

fj(M)sj

⎞
⎠ .

So, expression (11) holds.
This protocol reduces considerably the number of messages and rounds. These

are exactly h in both cases.
Let us remark finally that in the corresponding protocol given in [12] and [13], a

simple division on a finite field would yield every power computed for every user
and thus, to compromise every user’s private key. In the case we are considering,
this attack is not possible since the number of noninvertible elements in E(m)

p is
very large when m is large compared with p as we stated in Section 2.

4 Join-leave operations

When a new user Uh+1 joins the group a rekeying is needed in order to preserve
backward secrecy.

Let us assume that Uh has stored the h-vector of elements in E(m)
p given by

expression (6). Then the join operation will consist of the following steps:
1. User Uh generates a new polynomial f̂h(x) ∈ Z

(
E

(m)
p

)
as well as two new

positive integers r̂h and ŝh. Then, he/she computes the elements of E(m)
p

given by

Kh+δ(j,1,h,l) = f̂h(M)r̂hKδ(j,1,h,l)f̂h(M)ŝh , for l = 2, 3, . . . , h− 1,

Kh+σ(j,1,h) = f̂h(M)r̂hKσ(j,1,h)f̂h(M)ŝh .

User Uh sends to the new user Uh+1 the (h+ 1)-vector
(
Kh−1+δ(j,1,h,1),Kh+δ(j,1,h,1),Kh+δ(j,1,h,2),

. . . ,Kh+δ(j,1,h,h−1),Kσ(j,1,h+1)

)
.

2. User Uh+1 acts as previously user Uh did, and computes the elements of
E

(m)
p given by

L
(h+1)
1 = fh+1(M)rh+1Kh−1+δ(j,1,h,1)fh+1(M)sh+1 ,
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L
(h+1)
l = fh+1(M)rh+1Kh+δ(j,1,h,l−1)fh+1(M)sh+1 ,

= fh+1(M)rh+1Kδ(j,1,h+1,l)fh+1(M)sh+1 , for l = 2, 3, . . . , h,

L
(h+1)
h+1 = fh+1(M)rh+1Kσ(j,1,h+1)fh+1(M)sh+1 .

3. User Uh+1 sends to every user the h-vector of elements of E(m)
p given by

(
L
(h+1)
1 , L

(h+1)
2 , . . . , L

(h+1)
h

)
. (13)

4. Finally, when every user Ui, for i = 1, 2, . . . , h, receives the h-vector
given by expression (13), he/she takes the (h+ 1 − i)th entry, L(h+1)

h+1−i, and
computes the new element Ŝi as

Ŝi = fi(M)riL
(h+1)
h+1−ifi(M)si , for i = 1, 2, . . . , h.

User Uh+1 denote by Ŝh the element L(h+1)
h+1 , i.e., Ŝh+1 = L

(h+1)
h+1 .

Now, Theorem 1 ensures that the shared secret by all users is

Ŝ1 = Ŝ2 = · · · = Ŝh = Ŝh+1.

Assume again that the system consists of h users:U1, U2, . . . , Uh. if user Ui, for
some i = 1, 2, . . . , h− 1, decides to leave the system, a rekeying is also needed in
order to preserve forward secrecy.

Recall that user Uh has the h-vector of elements in E(m)
p given by expression

(6). As in the join operation, user Uh generates two new positive integers r̂h and
ŝh, as well as a new polynomial f̂h(x) ∈ Z

(
E

(m)
p

)
. Then, the elements of E(m)

p

are computed by

L
(h)
1 = f̂h(M)r̂hKh−2+δ(j,1,h−1,1)f̂h(M)ŝh ,

L
(h)
l = f̂h(M)r̂hKh−1+δ(j,1,h−1,l−1)f̂h(M)ŝh ,

= f̂h(M)r̂hKδ(j,1,h,l)f̂h(M)ŝh , for l = 2, 3, . . . , h− 1,

L
(h)
h = f̂h(M)r̂hKσ(j,1,h)f̂h(M)ŝh .

That is, expressions (7)–(9) are used to compute L(h)
l , but replacing fl(M), rl

and sl, by f̂l(M), r̂l and ŝl, respectively, for l = 1, 2, . . . , h. Note that it is not
necessary to compute L(h)

h−i, because user Ui leaves the group.
Finally, user Uh sends to all users, except to user Ui, the (h− 1)-vector

(
L
(h)
1 , L

(h)
2 , . . . , L

(h)
h−1

)
,

and each user computes the new shared secret key as in step 6 of Protocol 1.
In case user Uh decides to leave the system, then user Uh−1 changes his/her

private key and acts as Uh.
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5 Example

In this example we show how to share a secret in a system with h = 4 uses using
Protocol 1.

Assume that p = 2 and m = 5 and consider the public elements M ∈ E
(5)
2 and

N ∈ E
(5)
2 \ Z

(
E

(5)
2

)
given by

M =

⎡
⎢⎢⎣

1 0 0 0 1
0 0 0 1 0
0 2 3 2 7
8 0 2 14 0
0 8 4 2 23

⎤
⎥⎥⎦ and N =

⎡
⎢⎢⎣

1 1 0 1 1
2 0 0 2 3
4 0 5 1 2
0 0 0 7 15
0 8 0 0 5

⎤
⎥⎥⎦ .

For some polynomials f1(x), f2(x), f3(x), f4(x) ∈ Z
(
E

(5)
2

)
[x] we have obtai-

ned the following elements:

f1(M) =

⎡
⎢⎢⎣

1 0 0 0 1
0 3 0 0 2
0 4 1 6 5
0 8 12 7 14
16 16 16 20 21

⎤
⎥⎥⎦ , f2(M) =

⎡
⎢⎢⎣

1 0 0 0 1
0 1 0 0 2
0 0 1 6 7
0 0 0 13 6
16 16 24 8 13

⎤
⎥⎥⎦ ,

f3(M) =

⎡
⎢⎢⎣

1 0 0 0 0
0 0 2 0 0
0 2 7 6 4
8 4 6 4 6
16 16 20 30 27

⎤
⎥⎥⎦ , f4(M) =

⎡
⎢⎢⎣

1 0 0 0 0
0 2 0 3 2
0 2 5 4 6
8 8 2 4 6
16 8 28 26 29

⎤
⎥⎥⎦

Assume that K0 = N and consider

(r1, r2, r3, r4) = (10, 5, 6, 11) and (s1, s2, s3, s4) = (5, 14, 16, 12).

Recall that the (ri, si, fi(M)) is the private key of user Ui for i = 1, 2, 3, 4.
User U1 computes the element

K1 = f1(M)r1K0f1(M)s1 =

⎡
⎢⎢⎣

1 1 0 1 0
2 0 0 2 1
4 4 1 1 7
0 8 4 13 9
16 8 0 4 9

⎤
⎥⎥⎦ .

User U1 sends K1 to user U2.
User U2 computes the elements

K2 = f2(M)r2K0f2(M)s2 =

⎡
⎢⎢⎣

1 1 0 1 0
2 0 0 2 1
4 0 5 7 1
0 0 0 3 5
16 24 8 0 9

⎤
⎥⎥⎦ ,

K3 = f2(M)r2K1f2(M)s2 =

⎡
⎢⎢⎣

1 1 0 1 1
2 0 0 2 3
4 4 1 7 6
0 8 4 9 15
0 24 8 4 5

⎤
⎥⎥⎦ .
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User U2 sends to user U3 the 3-vector (K1,K2,K3).
User U3 computes

K4 = f3(M)r3K1f3(M)s3 =

⎡
⎢⎢⎣

1 0 0 0 0
0 0 2 0 2
0 2 3 0 1
8 4 6 12 0
16 0 12 6 27

⎤
⎥⎥⎦ ,

K5 = f3(M)r3K2f3(M)s3 =

⎡
⎢⎢⎣

1 0 0 0 0
0 0 2 0 2
0 2 3 4 7
8 4 6 4 12
16 0 28 6 11

⎤
⎥⎥⎦ ,

K6 = f3(M)r3K3f3(M)s3 =

⎡
⎢⎢⎣

1 0 0 0 1
0 0 2 0 0
0 2 3 6 0
8 4 6 8 6
0 16 4 14 7

⎤
⎥⎥⎦ .

User U3 sends to user U4 the 4-vector (K3,K4,K5,K6).
User U4 computes the elements

L
(4)
1 = f4(M)r4K3f4(M)s4 =

⎡
⎢⎢⎣

1 0 0 0 1
0 0 2 0 0
0 2 3 2 6
8 4 6 0 2
0 16 20 14 7

⎤
⎥⎥⎦ ,

L
(4)
2 = f4(M)r4K4f4(M)s4 =

⎡
⎢⎢⎣

1 0 0 0 0
0 0 2 0 2
0 2 3 4 7
8 4 6 4 12
16 0 28 6 27

⎤
⎥⎥⎦ ,

L
(4)
3 = f4(M)r4K5f4(M)s4 =

⎡
⎢⎢⎣

1 0 0 0 0
0 0 2 0 2
0 2 3 0 5
8 4 6 12 8
16 0 12 6 11

⎤
⎥⎥⎦ ,

L
(4)
4 = f4(M)r4K6f4(M)s4 =

⎡
⎢⎢⎣

1 0 0 0 1
0 0 2 0 0
0 2 3 2 6
8 4 6 0 2
0 16 20 14 23

⎤
⎥⎥⎦ .

Let S4 = L
(4)
4 .

Now, user U4 sends to users U1, U2 and U3 the 3-vector
(
L
(4)
1 , L

(4)
2 , L

(4)
3

)
.

User U1 uses L(4)
3 to compute S1 = f1(M)r1L

(4)
3 f1(M)s1 .

User U2 uses L(4)
2 to compute S2 = f2(M)r2L

(4)
2 f2(M)s2 .

Finally, user U3 uses L(4)
1 to compute S3 = f3(M)r3L

(4)
1 f3(M)s3 .

Now, as we established in Theorem 1, S1 = S2 = S3 = S4.
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Assume now that a new user, U5, wants to join the above system.
User U4 generates a new private key

(
r̂4, ŝ4, f̂4(M)

)
with r̂4 = 7, ŝ4 = 4 and

f̂4(M) =

⎡
⎢⎢⎣

1 0 0 0 1
0 3 2 3 0
0 0 7 4 5
0 4 12 5 14
16 8 0 4 23

⎤
⎥⎥⎦ .

User U4 computes

K7 = f̂4(M)r̂4K3f̂4(M)ŝ4 =

⎡
⎢⎢⎣

1 1 0 1 0
2 0 2 3 2
4 4 7 5 5
8 8 8 5 13
0 24 8 8 23

⎤
⎥⎥⎦ ,

K8 = f̂4(M)r̂4K4f̂4(M)ŝ4 =

⎡
⎢⎢⎣

1 0 0 1 1
0 0 2 0 0
0 6 1 2 4
8 12 2 8 10
0 16 12 10 5

⎤
⎥⎥⎦ ,

K9 = f̂4(M)r̂4K5f̂4(M)ŝ4 =

⎡
⎢⎢⎣

1 0 0 0 1
0 0 2 0 0
0 6 1 6 6
8 12 2 0 14
0 16 28 10 5

⎤
⎥⎥⎦ ,

K10 = f̂4(M)r̂4K6f̂4(M)ŝ4 =

⎡
⎢⎢⎣

1 0 0 0 0
0 0 2 0 2
0 6 1 4 1
8 12 2 12 12
16 0 20 18 1

⎤
⎥⎥⎦

User U4 sends to user U5 the 5-vector (K6,K7,K8,K9,K10).
User U5 generates a private key (r5, s5, f5(M)) with r5 = 4, s5 = 10 and

f5(M) =

⎡
⎢⎢⎣

1 0 0 0 1
0 0 0 1 0
0 6 5 6 7
8 8 6 6 4
0 8 28 6 17

⎤
⎥⎥⎦ .

User U5 computes the elements

L
(5)
1 = f5(M)r5K6f5(M)s5 =

⎡
⎢⎢⎣

1 0 0 0 1
0 0 2 0 0
0 2 3 2 6
8 4 6 0 2
0 16 20 14 23

⎤
⎥⎥⎦ ,

L
(5)
2 = f5(M)r5K7f5(M)s5 =

⎡
⎢⎢⎣

1 0 0 0 0
0 0 2 0 2
0 6 1 0 3
8 12 2 4 0
16 0 4 18 17

⎤
⎥⎥⎦ ,

.
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L
(5)
3 = f5(M)r5K8f5(M)s5 =

⎡
⎢⎢⎣

1 0 0 0 1
0 0 2 0 0
0 6 1 6 6
8 12 2 0 14
0 16 28 10 21

⎤
⎥⎥⎦ ,

L
(5)
4 = f5(M)r5K9f5(M)s5 =

⎡
⎢⎢⎣

1 0 0 0 1
0 0 2 0 0
0 6 1 2 0
8 12 2 8 2
0 16 12 10 21

⎤
⎥⎥⎦ ,

L
(5)
5 = f5(M)r5K10f5(M)s5 =

⎡
⎢⎢⎣

1 0 0 0 0
0 0 2 0 2
0 6 1 0 3
8 12 2 4 0
16 0 4 18 1

⎤
⎥⎥⎦ .

Let S5 = L
(5)
5 .

User U5 sends to users U1, U2, U3 and U4 the 4-vector
(
L
(5)
1 , L

(5)
2 , L

(5)
3 , L

(5)
4

)
.

User U1 uses L(5)
4 to compute S1 = f1(M)r1L

(5)
4 f1(M)s1 .

User U2 uses L(5)
3 to compute S2 = f2(M)r2L

(5)
3 f2(M)s2 .

User U3 uses L(5)
2 to compute S3 = f3(M)r3L

(5)
2 f3(M)s3 .

Finally, user U4 uses L(5)
1 to compute S4 = f4(M)r4L

(5)
1 f4(M)s4 .

Now, as we established in Theorem 1, S1 = S2 = S3 = S4 = S5.

6 Conclusions

We introduce a key agreement protocol for secure communications based over a
noncommutative ring with a large number of noninvertible elements. The protocol
shows to be efficient for large audiences, making it applicable nowadays for
widely extended secure multicast communications and allows users to join or
leave the communication group preserving forward and backward secrecy in an
efficient way.
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