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Abstract

Channel coding, including convolutional and Turbo coding, represents a new and
very powerful error control technique, which started to have a significant impact
in the late 1990s, allowing communication very close to the channel capacity.
The powerful error correction capability of channel coding was recognized and
accepted for almost all types of channels leading to increased data rates and
improved Quality of Service. Many standards, included Digital Video Broadband
(DVB), Deep Space Network (DSN), Universal Mobile Telecommunications
System (UMTS), WiMAX and others, based on channel coding (convolutional
and turbo codes) have already been defined although they are currently under
investigation. Authors have been analyzing and reviewing various available tools
to evaluate new correcting codes. In the majority of scientific publications, the
software used in channel coding simulations is rarely referenced and the results
are presented without describing how they have been obtained. In this paper,
the authors present a review of simulation software for channel coding systems
currently available in the scientific community. This analysis is based on criteria
such as simplicity, versatility, flexibility and performance. Our objective is to
analyse and describe these properties in available software and conclude by
choosing a software tool for the development of new convolutional codes in a
future work.
Keywords: convolutional code, turbo code, channel coding, simulation,
performance, forward correcting codes.

1 Introduction

With the invention of Turbo Codes [1] and the emergence of turbo-like codes in
general, channel coding has finally closed the gap to the capacity for an additive
white Gaussian noise (AWGN) channel.
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The capacity-approaching performance of turbo-like codes has been a major
step forward, but there is still a practical need for improvements in terms
of versatility, throughput and simplicity. Important parts of modern wireless
communication systems, e.g., HSDPA [2] and IEEE 802.16a [3,4], are techniques
such as adaptive modulation and automatic repeat-request (ARQ) coding schemes.
These techniques require versatile rate-compatible code schemes in terms of both
code rate and block length.

A rate-compatible code family [5] is a set of codes that can be encoded/decoded
using a common encoder/decoder. The rate-compatibility restriction requires that
the rates are organized in a hierarchy, that is, the high-rate codes are embedded
into the lower rate codes of the family. This allows transmission of incremental
redundancy in ARQ/FEC schemes and rate variation, changing from low to
high error protection within a data frame. Puncturing is an effective strategy for
designing rate-compatible parallel concatenated convolutional codes (PCCCs),
serially concatenated convolutional codes (SCCCs) and low density parity check
code structures [6, 7] . The code rate flexibility provided by rate-compatible codes
is, however, obtained at the expense of performance losses for the higher rate
schemes. To compensate for these losses, a more powerful parent code is required,
which in turn leads to more complex designs.

Parent codes are in particular convolutional codes, which have been studied
from different points of view. In the last decade several authors, such as [8–12],
have introduced different constructions of optimal convolutional codes over any
finite fields. Climent et al. [13] studied the concatenation of convolutional codes
over finite fields from linear systems point of view and, more recently, Devesa
et al. [14], introduced optimal 1/n turbo codes over finite fields, from the same
point of view. These advances in coding theory motivates the investigation of
channel coding simulations over any finite fields. With this purpose the work
is structured as follows: In Section 2 we give the basic background theory of
convolutional codes which we need through the paper. We describe the main tools
actually available according to criteria as simplicity, usability, performance, and
extensibility to be evaluated for the simulation of channel coding in Section 3. To
display the software programmability seen in Section 3 and analyze their behavior,
we have developed the same simulation using three tools: Toolbox of Matlab, CML
and GNUradio, which we describe in Sections 4 and 5. We finally the paper with
the Section of Conclusions.

2 Notations and definitions

Let F = GF (2) be the Galois field of two elements, F[D] the polynomial ring in
the variable D with coefficients in F, F(D) the field of rational functions over F
and F((D)) the field of Laurent series, that is,

F[D] =

⎧⎨
⎩

L∑
j=0

ajD
j | L ∈ N0, aj ∈ F

⎫⎬
⎭ (1)
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and

F((D)) =

⎧⎨
⎩

∞∑
j=l

ajD
j | l ∈ Z, aj ∈ F

⎫⎬
⎭ (2)

Many different definitions of convolutional codes can be found throughout the
literature [15–17]. In what follows, we describe a rate k/n, (with k < n),
convolutional code over the field F = GF (2) as a device which generates the
n-tuple

vt = (v
(1)
t · · · v(n)t ) ∈ F

n (3)

of code bits at time t given the k-tuple

ut = (u
(1)
t · · ·u(n)t ) ∈ F

k (4)

of information bits. The mapping between the information sequence u =
(ut, ut+1, . . .) and the code sequenceu = (vt, vt+1, . . .) is determined by v = uG,
where G denotes the generator matrix. The sequences start at some finite time t0,
and the input k-tuples are zero for t < t0. Moreover, sequences of ut and vt can
be written as

u(D) =

∞∑
t=t0

utD
t ∈ F

k((D)) (5)

and

v(D) =

∞∑
t=t0

vtD
t ∈ F

n((D)) (6)

respectively. Hence, a convolutional encoder can equivalently be described by a
(k × n) generator matrix G(D) of full rank with polynomial or rational entries
such that v(D) = u(D)G(D).

In the following, we adopt the notation used by McEliece [18] and we call a
convolutional code C of rate k/n and degree δ as (n, k, δ)-code, where δ is the

degree of C defined as the number δ =
k∑

i=1

νi, where νi denotes the ith row degree

of a basic and minimal generator matrix G(D) ∈ F[D]k×n (that is, G(D) has a

polynomial right inverse and the sum
k∑

i=1

νi attains the minimal value among all

generator matrices of the convolutional code C).
A generator matrix and its corresponding encoder is called systematic, whenever

all bits in ut appear unchanged in vt. It is important to note that being systematic is
a property of the encoder and not a property of the code, since every code can be
encoded using systematic as well as nonsystematic encoders. While both of them
generate the same set of codewords, the code sequence v(D) associated with a
certain information sequence u(D) is usually different. The state of the encoder at
time t is denoted by xt = (x

(1)
t , . . . , x

(m)
t )T , where m is the number of memory

elements of the encoder.
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3 Simulating convolutional codes

Our objective is to obtain an adequate software for the simulation of channel
coding. Thus, the authors have been investigating the tools actually available
according to criteria as simplicity, usability, performance, and extensibility. This
section describes the main tools found to be evaluated with examples in later
sections.

3.1 Communication toolbox for Matlab

Communications System Toolbox provides algorithms and tools for the design,
simulation, and analysis of communications systems. These capabilities are
provided as MATLAB functions, MATLAB System objects, and Simulink blocks.
The system toolbox includes algorithms for source coding, channel coding,
interleaving, modulation, equalization, synchronization, and channel modeling.
Tools are provided for bit error rate analysis, generating eye and constellation
diagrams, and visualizing channel characteristics. This toolbox also provides
adaptive algorithms that let you model dynamic communications systems that
use OFDM, OFDMA, and MIMO techniques. Also, it provides block and
convolutional coding and decoding techniques to implement error detection and
correction, which are the purpose of our study.

3.2 Coded modulation library

CML (Coded Modulation Library) is an open source toolbox for simulating
capacity approaching codes in Matlab. It’s available for free at the Iterative
Solutions website [19]. Mainly, CML simulates several bit interleaved coded
modulations as convolutional codes, Turbocodes, and also modulation as PSK
(Phase Shift Keying), QAM (Quadrature Amplitude Modulation) or FSK
(Frequency Shift Keying). CML supports real standards as binary UMTS/3GPP,
LTE, CSMA2000 or CCSDS, and turbocodes as DVB-RCS or WIMAX IEEE
802.16. CML is mainly a toolbox for prototyping in Matlab but also can be
executed in a compiled mode which can be used independently of Matlab. In this
way, CML is composed by C-mex files compiled for Windows PC and C sources
files for Linux and Mac.

Two commands are mainly used in CML: CmlSimulate and CmlPlot. The
first one runs one or more simulations previously configured in Matlab scripts.
We must emphasize that the simulation with CML is mainly based on the proper
configuration of the parameters in the script. After the simulation, we will execute
CmlPlot to plot one or more simulations. Simulations are identified by scenarios.
The main content of the scenario file is a structure called sim param which
contains an array where each record corresponds to a single distinct simulation. An
important aspect that is relevant to achieving our goal is that CML is distributed
with source code and can be easily extended and modified.
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3.3 GNUradio

GNU Radio [20] is a free software development toolkit that provides the signal
processing runtime and processing blocks to implement software radios using
readily-available, low-cost external RF hardware and commodity processors.
It is widely used in hobbyist, academic and commercial environments to
support wireless communications research as well as to implement real-world
radio systems. GNU Radio applications are primarily written using the Python
programming language, while the supplied, performance-critical signal processing
path is implemented in C++ using processor floating point extensions where
available. GNU Radio is designed primarily to run on Linux platforms and is
distributed with source code so that it can be extended and modified by the
scientific community.

3.4 Self-made codes

In a high volume of publications, there is no reference to the simulation software
used for error correction simulations and in many others authors implement
their own code with programming languages as C. However, source code or any
reference is not distributed.

4 Evaluating software

To display the software programmability seen in Section 3 and analyze their
behavior, we have developed the same simulation using three tools: Toolbox of
Matlab, CML and gnuradio. We should remember that an important aspect of the
tool is its extensibility since our ultimate goal is to provide novel simulation tools
for nonbinary encoders. We based code generator proposed by Proakis [21] (G1 =
[133, 171]) with rate k = 1/2 and constraint Length = 7. This convolutional code
has been widely used in first forward error correcting codes system and so it’s
widely known by scientific community. Actually in real applications convolutional
codes has been replaced by turbocodes [22]. However, as turbo codes are an
evolution of convolutional codes, we consider more appropriate an analysis with
convolutional codes first. In all simulations, we have used a bit frame with 106

elements. We must note that we get a memory error when using Matlab with 107

elements and it works right when simulating with CML.
In Figure 1, we show the script which uses Matlab’s Toolbox. As we can see,

we may also use the Matlab debug mode that allows more comfortable refine the
prototype encoder. In lines 1 to 4, we specify the parameters of the simulation,
in line 5 we obtain the maximum expected theoretical BER (shown in Figure 4 as
Expected BER). At line 7 convolutional coding is performed, and after that, noise is
added in the transmission channel. Finally, in line 7, the viterbi decoder algorithm
is performed.

In the CML software, simulations are structured in a sim param configuration
array. After executing with the CmlSimulate command, the output in the array
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1 codeRate = 1/2;constlen = 7;
2 codegen = [171 133];
3 trellis = poly2trellis(constlen, codegen);
4 dspec = distspec(trellis, 7)
5 expVitBER = bercoding(EbNo, ’conv’, ’hard’, codeRate, dspec);
6 ...
7 msg_enc = convenc(msg_orig, trellis);
8 ...
9 msg_dec = vitdec(msg_demod, trellis, tblen, ’cont’, ’hard’);

Figure 1: Example of convolutional coding using Matlab Toolbox.

1 record = 1;
2 sim_param(record).sim_type = ’coded’;
3 sim_param(record).SNR = [0:0.5:8];
4 sim_param(record).SNR_type = ’Eb/No in dB’;
5 sim_param(record).framesize = 10ˆ6;
6 sim_param(record).modulation = ’BPSK’;
7 sim_param(record).mod_order = 2;
8 sim_param(record).mapping = [];
9 sim_param(record).channel = ’AWGN’;

10 sim_param(record).bicm = 1;
11 sim_param(record).demod_type = 0;
12 sim_param(record).linetype = ’k:’;
13 sim_param(record).legend = sim_param(record).comment;
14 sim_param(record).g1 = [1 0 1 1 0 1 1
15 1 1 1 1 0 0 1];
16 ...

Figure 2: Example of convolutional coding using CML.

sim state, which is used to plot the performance with CmlPlot. As we can
see in the code in Figure 2, line 2 will indicate the type of simulation, and define
the range and type of data on lines 2 and 3. In line 14 indicated by the parameter
g1, we will use the generator polynomial in the convolution. These simulations are
very coupled to the structure defined thus be considered a very rigid tool. However,
it is distributed with source so that it can be modified or extended. This makes
it an interesting tool that uses a tool as widespread as Matlab but extending its
functionality directly from your code.

Finally, we show an example using the library GNURadio. We note that this
code is in Python, however Python is an interpreted language very intuitive and
similar in many aspects to Matlab so a Matlab user should not have too many
problems in its use. As shown in the code shown in Figure 3, the simulation is
more laborious than in CML or in the Toolbox of Matlab. Gnuradio is structured
in a flow chart in which processes and blocks define data sources and connect
between them. Thus, from line 2 to 11 operational blocks are defined which will be
subsequently connected to a flowchart indicated in commands from line 13 to 17.
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1 ...
2 f=trellis.fsm(1,2,[121,91])
3 src = gr.vector_source_s(packet,False)
4 ...
5 enc = trellis.encoder_ss(f,0) # initial state = 0
6 mod = gr.chunks_to_symbols_sf(constellation,dimensionality)
7 ...
8 noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
9 ...

10 va = trellis.viterbi_s(f,K,0,-1)
11 dst = gr.vector_sink_s();
12 ...
13 tb.connect (src,b2s,s2fsmi,enc,mod)
14 tb.connect (mod,(add,0))
15 tb.connect (noise,(add,1))
16 tb.connect (add,metrics)
17 tb.connect (metrics,va,fsmi2s,s2b,dst)
18 tb.run()

Figure 3: Example of convolutional coding using GNURadio.

Finally, execution is performed by calling tb.run() in line 18. In line 2, we
define the generator polynomial as a decimal but in Matlab is defined as an octal
number. The authors have observed that the programming by gnuradio is certainly
more complex but more concise in all processes of communication. GNURadio
is based in Python packages and includes a set of libraries compiled in C for
performance improvement. However, GNURadio is an open source tool that can
also be expanded and modified to incorporate new features.

5 Performance evaluation

Figure 4 shows the results of the simulations with the three tools: Matlab, CML
and GNURadio. We also represent the maximum theoretical obtained in the
Matlab simulation. As expected, we see in the graph very similar results in all
simulations, however the calculation time of these simulations are not so similar
and we detected variations that should be analyzed in greater detail. So in Figure 5
we illustrate computing times for simulating the convolutional code described in
Section 4. We can note that computational times with the Matlab’s Toolbox are
lower than others, and CML has better times than GNUradio. However, Matlab
Toolbox is not able to execute bigger sizes because we have found memory
errors, maybe due to memory management inside the toolbox. Moreover CML
is distributed as open source and can be modified and be extended for our purpose.
In the other hand, GNURadio requires more time in simulation but we consider it
a complete and well structured software that can solve certain issues that can not
be reached with others.
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Figure 4: Performance in BER using Matlab, CML and GNURadio.
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Figure 5: Computing time needed in simulations using Matlab, CML and
GNURadio.

6 Conclusions

Due to extensive use of Matlab as prototyping language in the scientific
community, we consider the right tool for wider dissemination and validation
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by other research teams. Notwithstanding the Matlab toolbox libraries are not
easily extended, so we consider more interesting the utilization of CML, which
is distributed with its source code and it will allow us to implement new
convolutional encoders for any field not necessarily binary. In fact, we have
now found that any tool allowing non binary fields in convolutional coding
simulations. GNURadio also seems a powerful and well structured tool for the
simulation, however has greater difficulty in handling its programmability and
grater computing times. Our future work is focused to develop new simulation
tools for testing new convolutional codes with non binary fields using the selected
tool.
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