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Abstract 

Data Stream Management Systems (DSMSs) have not yet reached a mature 
enough stage to effectively run data mining algorithms, as they still face 
challenges within the streaming environment. Streamonas DSMS, as presented in 
a recent publication, is the first DSMS to reach the maximum level of difficulty 
supported by the Linear Road Benchmark which is 10 Expressways. The 
powerful engine of Streamonas can manage an input stream of 20,368 
tuples/second with an average query latency of 0.000026 seconds, 192,307 times 
faster when compared to the 5 seconds maximum query latency the benchmark 
allows. The on-line data mining over streams presented in this work, is the first 
effort to apply spatio-temporal data mining algorithms on the Streamonas DSMS 
system. Dynamic clustering of spatio-temporal subsequences in real-time has 
been performed successfully, within the large space, high bandwidth, heavy load 
linear road benchmark streaming platform. Dynamic clustering queries have 
been expressed in a novel SQL-like language, which we name Streamonas-SQL. 
Keywords: real-time, data mining, spatio-temporal, dynamic clustering, pattern 
matching, streamonas, streamonas-SQL, Linear Road Benchmark, query latency, 
throughput, semantic space. 

1 Introduction 

This work uses as a platform the streaming environment of the Linear Road 
Benchmark (LRB) [1, 2, 12–15] at the maximum level of its difficulty, i.e. 10 
XWays. The high-performance results of the Streamonas Data Stream 
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Management System (DSMS) on the LRB have been published in [1, 2]. The 
engine of Streamonas while tested at the maximum level of difficulty the Linear 
Road Benchmark supports (10 XWays) managed an input stream of 20,368 
tuples/second with an average query latency of 0.000026 seconds, 192,307 times 
faster when compared to the 5 seconds maximum query latency the benchmark 
allows. The results of this work, presented in the following sections, demonstrate 
that Streamonas can effectively perform large space, high bandwidth, heavy load 
dynamic clustering of spatio-temporal subsequences in real-time within the LRB 
streaming platform, at an average query latency of 0.000027 seconds. The 
dynamic clustering querying is expressed in a novel SQL-like language with the 
name Streamonas-SQL. 

2 Previous work 

Representation of the structure of an event sequence with Non-deterministic 
Finite Automata (NFA) has been used by [9, 11]. NFA are also used by the 
SASE event language [3, 4] in order to read query-specific event sequences 
efficiently from continuously arriving events. Other event systems are based on 
fixed data structures such as trees [8], finite automata [9] and Petri nets [10]. 
     The researchers in [3] achieve excellent performance results based on their 
own event generator platform. In this work we present our first efforts to apply  
on-line spatio-temporal data mining over streams on the Streamonas DSMS 
platform within the streaming environment of the Linear Road Benchmark along 
with performance evaluation. For pattern matching we have used as similarity 
metric the correlation coefficient between a given pattern and the incoming 
streaming information. While the correlation coefficient is a simple widely used 
methodology for off-line similarity measurement, the work [6] referred by [5], 
analyze that for Complex Event Processing and pattern matching in sequences of 
rows, the correlation aggregate is illegal when applied on groups of rows, as the 
two groups, depending on their respective filtering predicates, may have different 
number of rows. In [19] it is emphasized that extensive bibliography exists on 
spatio-temporal databases. The researchers in [24] introduce a stream processing 
paradigm of functional transformations (transducers) on streams. Aurora [23] has 
introduced an architecture based on a data-flow model and an algebra with a set 
of operators to express its stream processing requirements. The project STREAM 
[25] has built a Data Stream Management System prototype which supports a 
large class of declarative continuous queries over continuous and traditionally 
stored data sets. 

3 Spatio-temporal data-mining on streamonas 

3.1 Architectural outline 

As extensively analyzed in [1, 2] the Streamonas architecture follows a two layer 
architecture where streaming is decoupled from querying (Figure 1). The 
incoming serial data stream is decomposed into specially designed data-  
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Figure 1: Architecture and database design of an integrated streamonas 
platform for simultaneous data mining queries, with different 
semantics, on financial and linear road benchmark streams. 

structures, which store uniquely identified temporal sequences with the name 
Atomic Streams (ASTs). Special data structures called Spatio-Temporal Cuboids 
(ST-Cuboids) isolate and index the atomic streams. The incoming serial stream 
consists of data from the stock market, as also from car sensors. The Stream 
Semantic Decomposition Engine, decomposes the data into semantically 
meaningful temporal sequences (Atomic Streams), which populate the respective 
spatio-temporal cuboids.  

3.2 Database design 

ST-Cuboids have a role as fundamental for our DSMS as the role of a Relation in 
a Relational DBMS. Figure 1, presents the spatio-temporal cuboids of the 
database supporting simultaneously the Linear Road Benchmark queries as also 
the Financial Data Mining queries. We would like to emphasize the database 
centric nature of Streamonas which allows the integration of multiple streaming 
sources with different semantics within the same database model. This database 
centric logic, allows the reusability of the streaming information, by allowing 
queries of different applications to run in parallel and access the underlying 
database. 
     In an equivalent manner as in the Relational Databases theory, the ST-Cuboid 
Database Schema is the collection of schemas for the ST-Cuboids in the 
database. In order to support the data mining application within the streaming 
environment of the Linear Road Benchmark we define the following ST-Cuboid 
Database Schema: 
STOCK (Stock_Id:int, Price(t):AST(10)) 
CAR (Car_Id:int, Speed(t):AST(6), Segment(t):AST(6)) 
XWAY (XWay:int, Segment:int, Direction:int, Lane:int,  
              AVGS:AST(6), LAV:AST(6)) 
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     The ST-Cuboid STOCK stores the financial atomic streams while the  
ST-Cuboids CAR and XWAY store atomic streams generated from the Linear 
Road Benchmark simulating generation of data from car sensors. 
     The ST-Cuboid schemas include attributes of type Atomic Stream as also 
their historical span in parentheses (e.g. historical span is 10 for the atomic 
stream STOCK.Price(t), while it is 6 for the atomic stream XWAY.AVGS(t)).  
     The attribute Stock_Id describes the unique identification of each stock. The 
attribute STOCK.Price(t) of type atomic stream, models the evolving price of 
each stock. The attribute CAR.Car_Id models the static over time unique 
identification of each car, while CAR. Speed(t) of type atomic stream, models 
the evolving speed of each car. CAR. Segment(t) models the evolving segment 
(location) of each car on an XWay. In an equivalent manner the attributes of the 
ST-Cuboid XWAY, XWay, Segment, Direction and Lane are defined. The 
attributes AVGS and LAV of the ST-Cuboid XWAY model statistical 
information based on the specifications of the LRB. 

3.3 Real-time clustering of spatio-temporal subsequences based on the 
correlation similarity metric 

As also emphasized in [17], central to all goals of cluster analysis is the notion of 
the degree of similarity. For real-time cluster analysis of spatio-temporal patterns 
on the Streamonas Data Stream Management System, we have used correlation 
as a similarity metric [17]. More specifically we have used the correlation 
coefficient computational version analyzed in [18] (Eq. (1)): 
 

               (1) 

3.4 Simplicity of querying with streamonas-SQL 

Querying on Streamonas is expressed with an SQL-like language with the name 
Streamonas-SQL. Figure 2 shows the SQL statement expressing the query used 
during our experiments. While we shall extensively analyze Streamonas-SQL in 
a future publication, in this work we provide a general description of the 
Streamonas-SQL statement presented in Figure 2, emphasizing its simplicity. 
Streamonas-SQL manages tuples of atomic streams, rather than tuples of non-
temporal information. The SELECT clause of the statement, returns the atomic 
streams that satisfy the predicate over time, the FROM clause of the statement 
refers to the ST-Cuboid STOCK and the predicate Correlation_function (Price, 
Pattern1) > 0.95, receives as arguments two atomic streams (the stock price and 
the pattern) and returns their correlation based on equation Eq (1). The query is 
being re-evaluated upon each arrival of a new tuple. Efficiency is achieved by 
evaluating only the delta results of the query within the scope of the new arrival. 
It is important to mention that Streamonas-SQL differs from other research 
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works such as [3, 4, 6] as it does not include the pattern definition within the 
Query Expression. The object-oriented design of Streamonas allows the pattern 
to be stored as a data object in the database (as an atomic stream) and 
encapsulates the processing logic of each atomic stream in a respective function 
which we name Atomic Temporal Function (ATF). Correlation_function (Price, 
Pattern) is an example of an ATF. The query in figure 2 dynamically evaluates 
the members of a cluster of spatio-temporal subsequences for any stock in the 
database, where the correlation coefficient of the subsequence with the pattern is 
larger than 0.95. As shown in the experimental results, the population of the 
cluster with new members is performed with an average query latency of 
0.000016 seconds. 

4 Experimental results 

4.1 Preparation of the serial data stream and testbed 

We have used stock market data from [16]. Real data from seven indexes 
(NASDAQ 100, SP 500, Dow Jones, Diamonds, QQQQ and Spyder) have been 
multiplexed together and stored in a single file of 122.7MB. This single file has 
been used as an initial stress-test of the system at high-bandwidth. The tuples 
were also enumerated for reference purposes during the experiment. A number of 
6,385,295 tuples were included in the file. A second file was also created by 
multiplexing the stock data with the car sensor data of the Linear Road 
Benchmark at a level of 10XWays. This second file has a size of 6.3GB 
consisting of 126,717,975 tuples. The Linear Road Benchmark environment was 
used in order to test the effectiveness of Streamonas under heavy load. A single 
PC was used having as CPU a Pentium4 processor running at 3GHz with 4GB 
RAM and a 100GB hard disk. During the second experiment we have used the 
same data driver tool of the LRB as in [1] and [2].  

4.2 High bandwidth dynamic clustering of spatio-temporal subsequences in 
real-time with standalone performance evaluation on streamonas 

Our first experiment measured the performance of the Streamonas DSMS when 
applying dynamic clustering on a number of 7 stocks at high bandwidth.  
     A “W” shaped pattern (Figure 2) was chosen as the centre of the cluster. The 
cluster was being populated in real-time with a number of spatio-temporal 
patterns from any stock that would satisfy the predicate. Two members of the 
cluster and their respective correlations are presented in Figure 2. By increasing 
the threshold to r > 0.99, two only spatio-temporal patterns satisfied the 
predicate. The bandwidth of the experiment was 63,461 tuples/second while the 
average query latency (of the sample points) was 0.000016 seconds (Figure 3a). 
The first experiment was performed by reading data directly from disk and 
includes the overhead from the stream semantic decomposition. A second 
experiment was performed by buffering decomposed stock data in memory and 
then streaming it into the system. The clustering was performed at an average  
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Figure 2: A streamonas-SQL query developing dynamic clusters of spatio-
temporal subsequences in real-time. 

SELECT * 
FROM Stock 
WHERE 
Correlation_function 
( Price, Pattern1 ) > 0.95

Cluster 
Center: 
Pattern 1 
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bandwidth of 225,371 tuples/second with an average query latency (of the 
sampled points) 0.000004 seconds (measurements do not include the Stream 
Semantic Decomposition overhead) (Figure 3b). 

4.3 Large space - high bandwidth – heavy load dynamic clustering of 
spatio-temporal subsequences in real-time within the linear road 
benchmark streaming platform 

The experiments in section 4.2 were performed over a relatively small number of 
stocks (7 stocks). We wanted to stress test the Streamonas system under the 
heavy load of the Linear Road Benchmark as described in [1, 2]. We have 
applied the same dynamic clustering described in 4.2 on the financial 
information multiplexed with the car-sensor data, stored in a 6.3GB file as 
described in section 4.1. 

4.3.1 Dynamic clustering under the heavy load of the LRB 
A first experiment measured the performance of the system within the Linear 
Road Benchmark environment at its maximum level of difficulty (10XWays), 
loaded also with the dynamic clustering queries for the financial data. The 
average, maximum and minimum query latencies for this experiment (based on 
all tuples streamed into the system) are: 0.000026 seconds, 0.109826 seconds 
and 0.00003 seconds respectively. 

4.3.2 Large space – high bandwidth – heavy load dynamic clustering 
We wanted to stress test Streamonas in a scenario where patterns are searched 
within a larger space than the semantic space [2] defined by the 7 stocks. For this 
reason we performed a second experiment where we applied dynamic clustering 
of spatio-temporal subsequences over the large semantic space of the speeds of 
the 1,373,327 cars of the LRB (10 XWays), simultaneously with the dynamic 
clustering of the 7 stocks (historical span was 6 for all ASTs). In an example 
application we wanted to identify patterns of driving behaviour (e.g. any car 
accelerating or decelerating based on the predefined pattern). The average, 
maximum and minimum query latencies for this experiment are: 0.000027 
seconds, 0.188051 seconds and 0.00003 seconds respectively, evaluated based 
on each one of the tuples streamed into the system.  The bandwidth mapping of 
the system during the 3hr simulation is presented in Figure 4. 

5 Conclusions 

We have performed Large Space (more than 1.3 million evolving entities),  
High Bandwidth (63,461 tuples/sec on average), Heavy Load (6.3GB of data) 
Dynamic Clustering of spatio-temporal subsequences in real-time on the 
Streamonas Data Stream Management System. The experiments were performed 
within the environment of the Linear Road Benchmark at its maximum level of 
difficulty (10 XWays). In all our experiments, Streamonas performed excellently 
with an average query latency of 0.000027 seconds. Dynamic clustering was 
expressed in the novel Streamonas-SQL language. 
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Figure 3: Average bandwidth and average latency during dynamic clustering 
of spatio-temporal subsequences on streamonas. 
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Figure 4: Bandwidth mapping during dynamic clustering of spatio-temporal 
subsequences on streamonas for financial data and car-sensor data 
within the environment of the linear road benchmark. 
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