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Abstract 

Benford’s Law was first described by an astronomer in 1881, but physicist Frank 
Benford lent his name to the property in a mathematical treatise published in 
1938. Behaviour of numbers described by the Law defies intuition, 
demonstrating that one is the most frequent (30.1%), and nine is the least 
frequent (4.6%). The property holds for a wide variety of numbers, including but 
not limited to: stock indices, river lengths, road numbers, etc.  Departures from 
the classic Benford distribution are linked to anomalies, specifically in financial 
data where the property has been successfully employed in financial audits.  The 
limitation of Benford’s Law is that it identifies a relatively large pool of 
“candidate” anomalies that must be manually evaluated.  In the present analysis 
of Medicaid data, multivariate cluster analysis in multiple tandem analyses is 
used to winnow the number of anomalies to a pool of high probability anomalies 
for evaluation.  This approach makes the application of Benford’s Law more 
practical.  
Keywords: Benford’s Law, cluster analysis, ensemble multivariate technique. 
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1 Benford’s Law 

In lists of numbers from almost any source, the leading digit is 1 approximately 
30% of the time, with progressively decreasing frequency until 9 as the leading 
digit occurs less than 5% of the time (Table 1). This property is termed 
Benford’s Law, which is named for physicist Frank Benford who expounded on 
the property in 1938 [1].  However, the property was first noted by an 
astronomer, Simon Newcomb in 1881 [2].  The first mathematical treatment of 
Benford’s Law was published in 1988 [3]. 

Table 1:  Distribution of first digits according to Benford’s Law. 

Digit Probability 
1 30.1% 
2 17.6% 
3 12.5% 
4   9.7% 
5   7.9% 
6   6.7% 
7   5.8% 
8   5.1% 
9   4.6% 

 
     A generalization that holds is that measurements in the practical world have a 
logarithmic distribution, and it follows that the logarithm of almost any given set 
of measurements has a uniform distribution.  Although a counter-intuitive 
phenomenon, a wide variety of numbers conform to Benford’s Law: phone bills, 
ledger entries, mileages from fleet vehicles, street addresses, stock prices, census 
numbers, death rates, distances between cities, mathematical constants, and 
processes described by power laws (Figure 1).  

Figure 1: Distribution of first digits compared to Benford’s Law. 
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     An even less obvious property is that Benford’s Law is true regardless of the 
base of the numbers, but the proportion of occurrence will of course differ.  
Benford's law states that the leading digit d where d is a member of the set {1, 
…, b − 1}, and base b (b ≥ 2) occurs with probability proportional to: 
 

logb (d + 1) − logb d = logb ((d + 1)/d).    
 
     A number has a given first significant digit d with probability Pr:  Pr (first 
significant digit) = d = log10 (1 + d)−1 where d = 1,…., 9 [4].  Extension of 
probability to the general law is given by [5]: 
 

Pr(D1 · · ·Dk = d1 · · · dk) = log10 (1 + (d1…dk)−1)        
 
     Thus, the probability of the first two significant digits in a distribution being 
32 is:  P(D1D2) = 32 = log10(1 + (32)−1) = 0.01336 [6].  The first (non-zero) digit 
of the counts, lengths or distances of objects should have the same distribution 
whether the unit of measurement is inches, feet, yards, centimeters or meters.  
All existing or conceivable measurement scales will yield a logarithmic 
distribution and properties of logarithms (i.e., log10 (1) = 0 and log10 (10) = 1) 
results in a generalized Benford's law. For a distribution of initial digits the 
general property must apply to any set of data without regard to units of measure 
used, and that distribution of first digits fits the Benford Law.  Therefore, for any 
specific distribution of first numbers complete independence of scale must hold 
(e.g., multiplication by a constant does not change the distribution and the only 
distribution for which this holds is a uniform logarithm distribution). 
     The objective in this investigation is to extend the Benford’s Law to practical 
use to define a small set of highly anomalous observations. 

2 Methods and materials 

Data for three years of New York State Medicaid payments was provided by the 
Comptroller’s Office to conduct a proof of concept for use of data mining to 
identify a small subset of anomalies in financial data.  Analysts had no prior 
knowledge of the data.  Tables were joined into single dataset, cleaned of 
anomalies and non-sense data values (e.g., negative values), de-duplicated, and 
data homogenized (e.g., subtotal rows were removed).  In addition, spelling 
consistency checks were conducted and nulls dropped (names of cost centers and 
object codes had nulls).  Finally, only values > $10.00 were included in the 
analysis.  Analytical variables included: date paid, $ amount, cost center name, 
and object code. 
     Benford’s Law analyses were conducted using software by Nigrini [7] and 
Sherry Consulting (UK).  Stepwise multi-stage cluster analyses were done using 
SPSS V.16 (SPSS, Inc., Chicago, Ill, 2007) and SAS v9.1 (SAS Institute, Cary, 
NC  USA 2007). 
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3 Results 

3.1 Benford’s Law analysis 

Following the data treatments described in Section 2, descriptive statistics for the 
data set (mean is greater than median, right skewed) indicate that the dataset is 
acceptable for a Benford’s Law analysis because the basic moment conditions 
are satisfied (Table 2). 

Table 2:  Descriptive statistics for medicaid dataset. 

N Valid 60,969 
 Missing 0 
 Mean 14,337.896 
 Median 1,093.780 
 Mode 17.000 
 Skewness 45.072 
 Std. Error of Skewness 0.010 
 Kurtosis 2944.776 
 Std. Error of Kurtosis 0.020 
 Sum 874,167,198.82 

 

 

Figure 2: Distribution of first digits observed in analytical dataset. 

     Benford’s analysis of the first digits indicate 1’s occur more frequently than 
expected, 2’s and 3’s occur less frequently than predicted (Figure 2). 
     Among the second digits, there were too few 1’s, an excess of 2’s, and a 
deficit in the number of 3’s (Figure 3). 
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Figure 3: Distribution of second digits. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Distribution of first two digits. 

     Several “second digits” occurred more frequently than expected under the 
Benford distribution (10, 12, 13, 14, 15, 17, 20, 23) as shown in the spikes 
(Figure 4).  Of these, 17 is the most anomalous occurrence (n = 2176, z-statistic 
= 17.233, an excess of 1.1%).  The predicted number of anomalous rows is n=24 
(0.011 * 2176).  The problem is how to identify, among all the 17’s, which ones 
are anomalous?  Which 17’s are the ones that occur normally as part of the 
distribution? 
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Figure 5: First three significant digits distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Distortion factor in Medicaid data. 

     Of the digits between 100 and 999 evaluated, values of 156 (n=409) and 170 
(n=786) are most striking and highly significant (z-statistic = 18.42 and 50.64, 
respectively).  In the present analysis, focus is on 170 because it has the highest 
z-statistic.  For the 170’s, there is an excess of 1.04% (expected = 0.25%, 
observed = 1.29%).  The same problem remains – how to distinguish the 
anomalous 170’s from those that are part of the expected distribution. 
     The Distortion Factor analysis of the whole dataset does not appear to be 
highly unusual (Figure 6), although some anomalous behavior was identified. 
The overall book of business in the Medicaid data analyzed in the present study 
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is not highly unusual, indicating that as a whole the transaction dataset is not 
egregious.  Nonetheless, significant anomalies were detected in the dataset. 
     As observed earlier, the number of “candidate anomalies” with a Benford’s 
Law analysis is usually large (i.e., includes all digits of the identified set or 
sequence) and does not provide a method for narrowing the number of 
candidates down to a reasonable list of suspect values.  The next step in the 
traditional Benford’s Law analysis is manual evaluation.  In the present analysis, 
2,176 different rows (Medicaid transactions) would necessarily be evaluated to 
fully utilize the list of anomalies identified by the Benford analysis. 

3.2 Multivariate cluster analysis 

Cluster analysis was chosen because it can analyze initial significant digits data, 
and other types.  It can be used to analyze continuous and categorical data.  The 
weakness of cluster analysis is that it will cluster ANYTHING – even non-sense.  
Therefore, cluster analysis results must be closely scrutinized. 
     The first stage cluster analysis begins at the top level with all observations 
that were included in the analysis, and results in two clusters and an outlier.  An 
outlier cluster is one whose members are at least as distant from one another as 
they are from the two defined clusters.  The outlier cluster contains 21% of the 
cases, which is an unusually high number of cases for an outlier of any variety, 
not just a cluster.   
     The outlier cluster was used as the “dataset” for further clustering because the 
anomalies that are the object of the analysis are contained among the outliers.  
Flags were created for the 17’s and the 170’s for analytical purposes, and the 
outlier designation was also retained as a flag. 
 
 
 
 

 

Figure 7: First cluster analysis. 

N=60,962*

N= 29,022 N=19,132 N=12,815 

Cluster 1                                     Cluster 2                         Outliers 
Mean =  $3,447                        Mean =  $27,272         Mean = $19,692 

47.6%              31.4%                             21% 
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Figure 8: Within cluster occurrence of Benford anomalies. 

     As hypothesized, the Benford anomalies were concentrated in the outlier 
cluster, and continued clustering of the outlier cluster led to a small number of 
anomalies.   

 

Figure 9: Overview of multi-cluster drill down to Benford anomalies to 56 
candidates. 

4 Discussion and conclusion 

Benford’s Law can be used in tandem with multivariate techniques to identify 
anomalous financial transactions.  In this case cluster analysis was used, but 
other such scoring and distance related multivariate techniques could be used 
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also.  Benford’s law has been applied previously to large scale analyses of waste, 
fraud, and abuse [8].  However, the limitations were as discussed – the number 
of anomalies was too great to make the analysis of practical use. 
 

 

Figure 10: 381 anomalies of which 56 are Benford’s. 

     In future applications, ensemble techniques that employ several analytical 
applications may be used to detect waste, fraud, and abuse.  Ensemble techniques 
may include approaches such as Benford’s Law, and use these findings in an 
integrated sequence of analyses to narrow down the number of suspect 
transactions or individuals to high probability, high value anomalies that can 
justify human evaluation of the anomalies.  In this analysis, it was expected that 
24 anomalies of 17’s would be found, and 56 were identified. 
     In summary, this combination of anomaly detection techniques may add 
another tool to the methods available for analysis of large datasets for anomalous 
behaviour. 
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