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Abstract

Our aim in this paper is to compare different ways of forecasting using the wavelet
transform and the kernel regression. We consider that working with block (or
segment) of data is richer than working with individual data (as in traditional
kernel), as we assume there is some kind of pattern inside each block which
will improve the estimation, and therefore the prediction. We choose the wavelet
transform because this transform is able to separate components of data in different
locations and with different location in time and frequency. To test the performance
of the different methodologies we have carried out a Monte Carlo Study in
which we have compared the four methodologies: Ordinary Least Square (OLS),
Traditional Kernel (TK), Block Kernel (BK) and Wavelet-Kernel (WK). Two real
life applications have been realized. On the one hand, volatility smile has been
forecast and on the other, the rated temperature of the steel coils’ furnace is
predicted. Surprisingly contradictory results had been obtained.
Keywords: wavelets, Kernel regression, bandwidth selection, implied volatility,
option pricing models, steel coils’ furnace’s rated temperature.

1 Introduction

The wavelet transform is a mathematical tool that is very used in several fields
such as engineering, mathematics, physics, economics or finance. It allows us to
separate data evolving in time in different frequency-time components. This way,
we will be able to identify in data its peaks and discontinuities using high scales
components and its long-trend or pattern using the low ones, because as it’s known
at low scales the wavelet transform has a large time support,whereas at high scales
has a small one.
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One of the possible applications of wavelets is forecasting time series data. In
Antoniadis et al. [1], they consider the prediction problem of a time series on a
whole time-interval depending on its past utilizing a non-parametric technique:
the kernel estimation. In this paper, we apply this technique but adapted to cross
section data.

Like in Antoniadis et al. [1] we consider that working with block (or segment) of
data is richer than working with individual data (as in traditional kernel), because
we assume that there is some kind of pattern inside each block of data which will
improve the estimation and therefore the prediction. Besides, blocks have a time
structure, so we can only take into account the previous blocks and in no way future
blocks. We use wavelet transform to find similarities between different blocks and
apply a kernel-wavelet technique to make the regression.

Other possibility in order to extract the regression curve from the data is directly
the application of the kernel nonparametric estimator although we are going to
adapt it to the structure of the data we have, the blocks.

Our aim is to compare the predictions obtained via different methods:
1. The ordinary least square estimation (OLS).
2. The traditional kernel estimation (TK).
3. The blocked kernel estimation(BK).
4. The wavelet-kernel estimation (WK).

Before applying the proposed methodologies to real dataset, we do a Monte Carlo
study to present, in an empirical framework, the behavior of the methodologies.
Finally, we apply the methodologies to two real life dataset, in particular to

1. 1-day-ahead prediction of volatility depending on moneyness.
2. 1-block-ahead prediction of the rated temperature in the furnace for steel

coils.
In the first application, we have all call and put options on the IBEX-35 index
futures traded daily on MEFF during the period January 1996 through Novem-
ber 1998. A very important point in the option pricing models is whether the actual
distribution of the underlying asset implied by the option market data is consistent
with the distribution assumed by the theoretical option pricing model. In an option
pricing framework, the main theoretical model is the Black–Scholes (1973) model,
see [2], which establishes that all option prices on the same underlying asset with
the same expiration date but with different exercise prices should have the same
implied volatility. However, the well known volatility smile pattern suggest that
the BS formula tends to misprice deep in-the-money and deep out-of-the-money
options. There have been various attempts to deal with this apparent failure of the
BS valuation model. Our objective is to estimate the implied volatility appeared in
the Spanish market with the proposed methodologies.

In the second application, we work with steel coils in galvanized furnaces. Our
interest is focused on predicting the rated temperature in the furnace so that the
steel coil goes out of the galvanization process with the temperature needed. For
that purpose we have data of 100 steel coils with their temperatures at the entrance
of the furnace and inside it.
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This work is organized as follows. In Section 2 the nonparametric kernel
estimator of the unknown regression function is presented. In Section 3 the wavelet
method is described. Technical aspects in the two methodologies are explained in
Section 4. A simulation based comparison between wavelets and kernels appears
in Section 5. Finally, Section 6 presents the applications to option pricing and
industrial data and Section 7 concludes.

2 Nonparametric kernel methodology

In this section we describe the general framework in which the nonparametric
kernel estimation procedure is applied.

Consider the following data generating process (DGP):

Yi = m(Xi) + εi for i = 1, . . . , n, (1)

where the function m(·) is unknown, the values Xi (i = 1, . . . , n) are observations
of the explanatory variable with density function f (X), and the perturbation errors
are assumed to be i.i.d., with zero mean and variance equal to σ 2

ε .
Consider a realization {xi, yi}ni=1 from the DGP described above. For any point

x in the domain of the one-dimensional explanatory variable, the general one-
dimensional kernel estimator of m(x) can be written as:

m(x) =
∑n

i=1 Kh(x − xi)yi∑n
i=1 Kh(x − xi)

(2)

where h is the bandwidth and K is the univariate kernel or weight function; being,∫
K(x)dx = 1.
The estimation of m(·) is carried out after choosing the weight function K and

the smoothing parameter or bandwidth, h. It is well-known that the selection of
the kernel function is not relevant in the estimation (in this paper we have decided
to use the most famous one, the gaussian) but as long as the selection of the
bandwidth is important, we will explain with more detail in section 4 how we
have selected it.

As we said in the introduction, we are interested in extracting the signal from the
data and predicting in one block using the information in the previous blocks. So,
actually, instead of using the equation 2, we have used another two expressions,
explained below.

Let be xJ
i the i th observation of the J th block. We are interested in predicting

in every observation in block J , xJ
i , for i = 1, . . . ,m (where m is the number

of observations in each block), using the information in all the previous blocks
(p = 1, . . . , J − 1).

We propose two estimators for doing so:
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1. In the traditional one (TK), we are going to estimate using all the information
in the previous blocks, as follows:

m(xJ
i ) =

∑J−1
p=1

∑m
k=1 K

( xJ
i −x

p
k

h

)
y

p

k∑J−1
p=1

∑m
k=1 K

( xJ
i −x

p
k

h

) (3)

2. In the blocked kernel (BK), we are going to compare the data in the block
where we want to predict with all the data in each of the previous blocks, as
follows:

m(xJ
i ) =

∑(J−1)
p=1 K

( xJ
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3 Wavelet methodology

The wavelet transform used in this work is the discrete dyadic one. More details
about the wavelet transform could be obtained in Chui [3], Daubechies [4]
Vidakovic [5] among others.

The wavelet transform is widely used in many fields of economics and finance:
non-stationary time series, time-scale decompositions, forecasting, density estima-
tion, etc. Our work is centered in forecasting. There have been different approaches
to reduce and predict time series using wavelets. For instance: in Aussem and
Murtagh [6], Gonghui et al. [7] and Lotric [8] the wavelet is combined with neural
networks; in Cristi and Tummala [9], Hong et al. [10] and Renaud et al. [11] with
Kalman filter, in Renaud et al. [12] with autoregressive model and in Antoniadis
et al. [1] with kernel methodology, among others.

We are going to focus our attention in the combination between kernel and
wavelet for the forecasting problem, as in Antoniadis et al. [1], where the authors
use kernel to predict in time series domain.They measure the similarity between
intervals by means of the wavelet transform. We have adjusted that technique to be
able to apply to cross section data, so we will be doing kernel regression. Below,
we will explain this methodology.

According to Antoniadis et al. [1], we consider a continuous stochastic process
X = X(t)t∈R. If the process X is observed in a closed interval [0, T ] our aim is to
describe what will happen in the next interval [T , T + δ], δ > 0; this will be much
richer than to get an estimate for a single datum.

In order to predict, a stochastic process is defined associated to each subinterval,
[jδ, (j + 1)δ]j=0,1,...,k−1 and δ = T

k
for interval [0, T ] as follows:

Zi (t) = X(t + (i − 1)δ) i = 1, . . . , k ∀t ∈ [0, δ) (5)

This will cover the full range of [0, T ].
Thus, the continuous stochastic process X = X(t)t∈R is covered by a discrete

partition: Z = (Zi )i∈N . This representation of the stochastic process is common
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in statistics as it facilitates the understanding of how evolves the process X; it is
particularly advantageous if X has a seasonal component with period δ or if it is
intended to predict the future behavior of X on an interval of length δ.

The kernel estimator that we will use is the one defined in equation (2), but in
this case both predictor and response variables are discrete time functions, so our
variables will be blocks since the above partition is applied to all variables. Thus,
the prediction of block ZY

n is obtained via kernel regression on all the previous
blocks ZY

i i = 1, . . . , n − 1.

ZY
n (·) =

n−1∑
i=1

ωn,i ZY
i (·) (6)

where the weights, ωn,i , measure the similarity between the block ZY
n and all the

previous ones: ZY
i with i = 1, 2, . . . , n − 1.

Therefore, the predicted block is seen as a weighted average of past blocks
where the blocks more similar to the one predicting (the similarity is looked for
between X blocks) will have more weight and the less similar less weight. The
analysis of being more or less similar, is done by a distance between the discrete
wavelet coefficients. The different properties needed to apply this method may be
looked at Antoniadis et al. [1].

Among the reasons that we can highlight to choose the wavelet transform, is the
fact that the data collected in most of the processes are inherently multiscalar due
to contributions from events taking place at different locations and with different
location in time and frequency. Thus, the data analysis and modeling approaches
that represent the measured variables at various scales are better suited to extract
information from the data than methods that represent variables in a single scale.

In short, the forecasting technique has two steps: in the first place, blocks’
weights will be fixed analyzing the similarity between the predicting block and
the previous ones (as said before, this similarity is found between explanatory
variables’ blocks), and the second step, in which is implemented a weighted
average as the one described in equation 6.

Let us see how is defined the similarity between two blocks (see Antoniadis
et al. [1]). To this end we are going to define the similarity between two series:

Given two series, the wavelet coefficients of the discrete wavelet transform for
each time series at scale j = j0, . . . , J −1 and location k = 0, 1, . . . , 2j −1, with
j0 ≥ 0 are denoted by θ

(i)
j,ki = 1, 2.

In each scale, j ≥ j0, the distance is defined as it follows:

dj (θ
(1), θ (2)) =

(2j−1∑
k=0

(θ
(1)
jk − θ

(2)
jk )2

)1/2

(7)
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This metric measure the similarity between two series in scale j. To take into
account all scales, we use:

D(θ(1), θ (2)) =
J−1∑
j=j0

2−j dj (θ
(1), θ (2)) (8)

The distance defined in j th scale is weighted by 2−j . This is due to the fact that
successive scales have half as many discrete wavelet coefficients as the previous
scale, therefore distances of different scales are not directly comparable. This
problem is corrected by weighting the distance of a scale by twice the weight of the
next higher level. Thus, the distances of all scales are comparable and makes that
lowest scales (smoothed versions) have greater weight, something that is suitable
for the type of process we use, stationary processes (more details in Antoniadis
et al. [1]).

Once we have calculated the distances between blocks using wavelet scaling
coefficients (�i = {ξ(J,k)

i /k = 0, 1, . . . , 2J − 1} are the scaling coefficients at
scale J of block Zi ), the next step is the introduction of such distances within the
kernel function. Thus, the prediction kernel is the one described in equation 6 with
weights:

ωn,i = K(D(C(�n), C(�i))/hn)

1
n

+ ∑n−1
i=1 K(D(C(�n), C(�i))/hn)

(9)

where C(�i) are the wavelets coefficients obtained via the “pyramid algorithm”
(see Mallat [13]), hn is the smoothing parameter of the kernel regression and K is
the kernel function.

4 Technical aspects

In this section, we will described the technical features that had been used in the
methods presented.

Regarding to the discrete wavelet transform there are several wavelets basis (see
Daubechies [4]) we could choose from, although prior simulations showed that the
method is robust with respect to the wavelet filter chosen. Thus, we have chosen
for our applications the wavelet basis Symmlet 9. In the case where the number of
elements of our blocks or segments is not a power of 2 (necessary for the dyadic
discrete wavelet transform, see Daubechies [4]), each block of the explanatory
variables is extended by mirror to the closest power of two.

Whilst, as said before, the selection of the kernel function is not relevant,
the selection of the smoothing parameter is an important issue. We have used
two criteria to select the smoothing parameter: the GCV and the RICE criteria,
every time a kernel is employed both criteria are applied. Consider penalized
least error measure G(h), where h denotes the smoothing parameter, G(h) =
p(h)φ(n−1h−1) where p(h) = 1

n

∑n
i=1(Yi − m̂(xi))

2 is the prediction error
and φ(·) is the penalized function. Different proposal for φ(·) lead to different
criteria. We will use the Generalized Cross-Validation criterion (GCV), where
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Figure 1: MSE values for all methods except OLS.

φGCV(n−1h−1) = (1 − 1
n

trK(h))−2 and the Rice criterion (RICE), where
φR(n−1h−1) = (1 − 2

n
trK(h))−1.

5 Monte Carlo study

There is one main objective in this section: the analysis of the differences in
practice between the estimators of the different methods. For this purpose we have

simulated the following univariate model: m(x) = 6(1 − e
−x2
10 ) and the data are

generated as Yi = m(Xi) + εi , where Xi is a random sample from a standard
normal distribution and the error terms are also i.i.d. from a zero mean normal
distribution with standard deviation equal to 0.2. The number of replications is 100,
and each of them consist of 42 blocks or segments of length 24, which altogether
makes for series of size 1008.

Two measures of error have been computed to calculate the differences between
the true regression function and the estimated ones, in the four proposed methods:

MSE = 1

n

n∑
i=1

(yi − ŷi)
2 (10)

RME = 1

n

n∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (11)

In Figure 1 the empirical distribution of the MSE error measure is represented via
boxplots, for OLS (linear), OLS2 (quadratic), TK,BK,WK and only for the GCV
smoothing parameter proposal.

Unfortunately the traditional kernel method provides a better estimation. In spite
of these results, we checked out the methodologies in two real life datasets.
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We have removed the OLS errors from the Figure 1 because they distorted the
results.

6 Applications in real life datasets

6.1 1-day-ahead prediction of volatility

As said in the introduction, we apply the methodologies in a financial database,
with the aim of explaining better the volatility implied in the option prices.
Although our database is comprised of all call and put options on the IBEX-
35 index futures traded daily on MEFF during the period January 1996 through
November 1998, in this paper we are only going to present the comparison between
the methodologies for the calls in 1996 due to lack of space, but the other results are
available upon request. Also, we eliminate the observations before 10:30 and after
16:45 to avoid data which may reflect trades to influence market maker margin
requirements.

In 1998, Aı̈t-Sahalia and Lo [14] estimated the implied volatility function using
a multivariate kernel estimator, where the BS implied volatility is replaced by a
nonparametric function which depend upon the explanatory variables: moneyness
degree and time-to-expiration. In 2002, with the same database as ours Ferreira
et al. [15] estimated the same function using a multivariate SNN kernel estimator,
including the liquidity as an explanatory variable. Although they found that
liquidity was important in the in-sample pricing, in the out-of-sample performance
only the moneyness seems to be important to explain the smile.

We have estimated the implied volatility depending on the moneyness with
the described methodologies. In Table 1, we present the results, in terms of
the mean square error (MSE) and the relative mean error (RME). In this case,
the wavelet-kernel methodology is the best (statistically proved) to explain the
volatility smile in 1996.

Table 1: Errors of different estimators for volatility and temperature.

Prediction Method MSEVolat RMEVolat MSETemp RMETemp

OLS 6.254 0.117 539.63 0.02325

OLS2 6.258 0.117 538.96 0.02521

TK 6.589 0.132 333.20 0.01547

BK 5.875 0.119 357.45 0.01563

WK 4.824 0.111 293.81 0.01447
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6.2 1-block-ahead prediction of the temperature needed in the furnace for
steel coils

In industrial plants it is important to reduce the costs derived from manufacturing
process failures. One of those failures could be found in galvanized furnaces for
steel coils: for example, if the steel coil goes out of the galvanization process with
the wrong temperature, the coil is not accepted. In our case, our principal aim is
to predict the rated temperature in the furnace to get the needed temperature of the
steel coil. In order to explain this variable, we re going to use the variables that
Martı́nez de Pisón (2003) [16] considered significant in his thesis. Thus, we have
chosen two variables: Temperature of the steel coil at the entrance of the furnace
and the rated temperature of the furnace, the second variable being the response
variable. We had 100 steel coils, each with 16 points. The results obtained are
shown also in Table 1. In this case as well, the wavelet kernel methodology has
better (statistically) results than the others.

7 Conclusions

We have applied four different methodologies in our work. In the Monte Carlo
study the traditional kernel estimator has shown better results than the others, but
on the other hand in real life applications the wavelet-kernel estimator performs
better. This has led us to question if the worse outcome obtained in simulations are
due to mirror extended data as explained in Section 4 or that the data simulated are
not good for this type of blocks’ application. Further research has to be developed
in these issues.
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