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Abstract

Clustering has typically been a problem related to continuous fields. However, in
data mining, often the data values are nominal and cannot be assigned meaning-
ful continuous substitutes. The largest advantage of the k-means algorithm in data
mining applications is its efficiency in clustering large data sets. The k-means algo-
rithm usually uses the simple Euclidean metric which is only suitable for hyper-
spherical clusters, and its use is limited to numeric data. This paper extends our
work on the DCV metric which was introduced to deal with nominal data, and
then demonstrates how the popular k-means clustering algorithm can be profitably
modified to deal with the DCV metric. Having adapted the k-means algorithm, the
DCV metric will be implemented and the results examined. With this development,
it is now possible to improve the results of cluster analyses on nominal data sets.
Keywords: clustering, data mining, Mahalanobis metric, DCV metric, Hamming
metric, k-means.

1 Introduction

A way of extracting information from a large data set is to cluster it. Clustering
involves assigning objects into groups such that the objects in a group are simi-
lar to each other, but different from the objects in the other groups. Similarity is
fundamental to the definition of a cluster and being able to measure the similarity
of two objects in the same feature space is essential to most clustering algorithms.
In a metric space, the dissimilarity between two objects is modelled with a dis-
tance function that satisfies the triangle inequality. It gives a numerical value to the
notion of closeness between two objects in a high-dimensional space. More details
of metric spaces can be found, for example, in [3]. Applications of clustering exist
in diverse areas, e.g.
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Genetics: Finding similar DNA or protein sequences [8].
Disease: Finding a virus similar to a given one from a large virus dataset or

finding groups of viruses with certain common characteristics [6].
Image recognition: Finding images similar to a given one from a large image

library [7]
Document retrieval: Finding documents related to a given document in a digital

library [4].
World Wide Web: Clustering or finding sets of related pages [5].

Many of the fields in data mining consist of categorical data which describe the
symbolic values of objects. The most important types of categorical data can be
classified as follows.
• Ordinal data: induces an ordering of objects. As well as distinguishing

between x = y and x �= y, the ranking of the objects can be used to obtain
an inequality, x > y or x < y.
• Nominal data: an object has one of two or more values but no ordering can

be given to these values.
Since ordinal data can be ordered, it can be transformed into integer values.

These values are not necessarily sequential. Therefore, there is a need for metrics
that can adequately deal with categorical data, especially when this contains nom-
inal fields. Therefore, a new metric, DCV , which uses Cramer’s V statistic [12], is
proposed to satisfy these requirement [2]. The DCV metric is based on the Ham-
ming metric which deals with nominal data, but is also derived from the Maha-
lanobis metric. Unlike the Mahalanobis metric however, the DCV metric uses the
relationship matrix of nominal fields.

The rest of this paper is organized as follows. Section 2 presents the DCV met-
ric. In Section 3, we introduce the concept of generalized k-means algorithm. The
combination of the generalized k-means algorithm and the DCV metric is demon-
strated in Section 4. Section 5 describes experiment with the new algorithm and
discusses the results. Section 6 summarizes our research.

2 DCV

If the fields are categorical, special metrics are required, since distance between
their values cannot be defined in an obvious manner. The Hamming distance is the
most popular measurement that is used to compute the distance between nominal
data. If p and q are nominal values, the Hamming distance is defined as follows:

δH(p, q) =
{

0 if p = q,

1 otherwise.
(1)

If p, q are n-tuples of categorical values, then we define the Hamming distance
between them to be:

δH(p1, q1)+ · · · + δH(pn, qn). (2)

 © 2008 WIT PressWIT Transactions on Information and Communication Technologies, Vol 40,
 www.witpress.com, ISSN 1743-3517 (on-line) 

44  Data Mining IX

metric



where n is the number of categorical values. However, the Hamming metric has
some limitations due to its lack of ability to handle any relationships between
fields.

Let x and y be two objects described by nominal data, where x = (x1, . . . , xn)

and y = (y1, . . . , xn). Then, we can introduce a new dissimilarity metric between
x and y, thus

DCV (x, y) =
√

δH(x, y)O−1 δH(x, y)T , (3)

where O is the relationship between fields and δH(x, y) is defined to be the vec-
tor of the Hamming metric of corresponding nominal values. The relationship
between two fields measures their correlation. All of the relationship o(s, t) can
be collected together into a relationship matrix O = [ost ], which is defined as
follows.

D = D1 × . . . ×Dn is the domain of the database. A general record r ∈ D is
of the form r = (r1, . . . , rn) where ri ∈ Di determines the value of attribute Ai .
Let Ds = {u1, . . . , uI }, Dt = {v1, . . . , vJ }. Then a contingency table for Ds and
Dt is

contingency-table (Ds,Dt ) = [Nij ], (4)

where Nij = |{r : r ∈ D, ri = ui and rj = vj }|. Define Ki = ∑J
j=1 Nij ,

Lj =∑I
i=1 Nij , M =∑I

i=1 Ki =∑J
j=1 Lj , then the chi-square value for Ds,Dt

is computed by

χ2
st =

∑
i,j

(M Nij −KiLj )
2

M Ki Lj
. (5)

We then define the Cramer’s V statistic [12] by

ost =
√

χ2
st

N min(I − 1, J − 1)
, (6)

Equation (6) measures how Ds and Dt are related, giving a value between 0 and
1. A value of zero indicates no correlation (i.e. independent fields), and a value of
one indicates a strong correlation. For more details see [1, 2]

3 The generalized k-means algorithm

The well-known k-means algorithm [11] is the most popular algorithm for parti-
tioning data. It uses an iterative, hill-climbing technique. Starting with an initial k

partition, objects are moved from one partition to another in an effort to improve
the results of clustering. In the case where the points are real valued, the centroid
is the mean of the points in the cluster, and hence the algorithm is known as the
k-means algorithm.

The largest advantage of the k-means algorithm in data mining applications is
its efficiency in clustering large data sets. The k-means algorithm usually uses the
simple Euclidean metric which is only suitable for hyperspherical clusters, and its
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use is limited to numeric data. However, the most distinct characteristic of data
mining is that it deals with categorical data. Consequently, Huang [9] presents an
algorithm, called k-modes, to extend the k-means paradigm to categorical objects.
k-modes uses the Hamming metric. However, the Hamming metric does not take
into account any correlations between fields. In order to extend the k-means algo-
rithm, and to make it applicable for dealing with different metric spaces, it needs
to be generalized in the context of metric space.

The k-means algorithm starts with an initial partition, and then moves objects
from one cluster to another in an effort to improve the value of the clustering.
Thus, we are indeed using a simple greedy algorithm that searches for an optimal
or near-optimal clustering.

Different metaheuristic search methods (such as simulated annealing, steepest
ascent or tabu search [13]) could also be used to search for an optimal or near-
optimal clustering.

In addition, if an objective function uses a centre point, a greedy algorithm
can operate more efficiently. Thus, algorithms based on moving centres have been
developed. Such “Moving-Centres” algorithms proceed by: (1) computing the cen-
tre point for every particular subset as a representative point, and (2) exploiting a
metric, δ, to measure the distance between objects and that centre point. k-means
is one of the most popular of these algorithms. The direct k-means algorithm uses
the mean as a centre point, however, the idea of k-means and the notion of mean
can be extended to general metric spaces.

In order to improve the efficiency of the greedy algorithm, the following func-
tions are requires:

(1) A function initial partition to provide the initial k clusters {C1, C2, . . . , Ck}.
(2) A function centre : 2C → C which given a cluster computes its “centre”.
(3) A function select: Ç(C)→ 2C which given a cluster determines the elements

of C, which should be considered for reassigning.
(4) A termination condition finish : Ç(C)→ {T , F } which decides if and when

the clustering is satisfactory, and then terminates the algorithm.
Definition 1. Given a cluster Ç = {C1, C2, . . . , Ck} and x ∈ C we define
• cluster(x) = i iff x ∈ Ci

• nearest(x) = j iff for all j �= l, δ(x, centre(Cj )) ≤ δ(x, centre(Cl ))

and if
δ(x, centre(Cj )) = δ(x, centre(Cl)) then j < l.

Algorithm 1, below, shows the abstract code for the generalization of the k-
means algorithm.

3.1 The centre point

The notion of a centre is the key element in using the generalized k-means algo-
rithm (i.e. Algorithm 2). In addition, it is crucial for the time efficient convergence
of the algorithm. This convergence can be seen when the objective function uses
the centre point as a representative point for each cluster, then each object is real-
located only if it is nearer to the centre point of a gaining cluster than to the centre
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Ç← initial partition;
for each Ci ⊆ Ç do ci ← centre(Ci );
while not finish(Ç) do

S:= select(Ç);
for each x ∈ S do
• adjust Ç such that x is removed from Ccluster(x)

to Cnearest(x);
• recompute ccluster(x) and cnearest(x);

end-for
end-while

Algorithm 1. Generalization of the k-means algorithm.

point of a losing cluster. In this case the distance from the centre point decreases
more for the losing cluster than it increases for the gaining cluster, giving an over-
all decrease in the objective function. Therefore, it is important that the centre
point is efficiently identified. Centre points may be categorized into two types: (1)
centroid, and (2) medoid.

Definition 2. Given any set of points, C, in a metric space, M, a point ĉ ∈M is
called a centroid of C if ∑

x∈C
δ(ĉ, x) is minimised. (7)

ĉ will be denoted by centroid(C) [11].

Definition 3. Given any set of points, C, in a metric space, M, a point m̂ ∈ C is
called a medoid of C if ∑

x∈C
δ(m̂, x) is minimised. (8)

m̂ will be denoted by the medoid(C) [10]. Note that a medoid must be an element
of C whilst a centroid can be any element of M. Neither is necessarily a unique
point.

4 Implementing the DCV metric

As the DCV metric deals with categorical data, the use of the medoid, m̂, is appro-
priate. When using such a metric, the generalized k-means algorithm needs to
retain the medoid by building a summary table showing the frequency of each of
the values. This table is important for two reasons; firstly, it reduces the amount
of data to be stored and analysed, and secondly, it aids efficiency when computing
medoids.
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The summary table is used by each cluster during the first iteration of the gener-
alized k-means algorithm, but it is used only once. Subsequent determinations of
the medoid will use a local summary table for each cluster. Each local summary
table contains the frequency values of the objects in that cluster. Then in each iter-
ation of the algorithm, if a point (x1, . . . , xn) which belongs to cluster Ci is moved
to cluster Cj , then the medoids of both clusters (Ci and Cj ) are adjusted accord-
ingly. As a result of this, the frequencies will be changed and the new centroid of
each cluster will be updated according to the new frequencies.

This method defines a way of computing the medoid of DCV from a given cat-
egorical data set. The advantage of this method is that it allows the generalized
k-means algorithm to cluster categorical data without losing efficiency. The gener-
alized k-means algorithm, together with DCV , may be represented in the following
operations:

1. Preprocessing Stage.
a. Compute the relation matrix O, and its inverse.
b. Compute the weight for each field.

2. Clustering Stage.
a. Select k random initial clusters, Ci (1 ≤ i ≤ k), and compute the

medoid, m̂i , of each cluster.
b. Compute the summary tables for each cluster.
c. Measure the distance between an object and the medoid point of each

cluster and reassign an object to its nearest medoid.
d. Adjust both summary tables of the clusters from which the object has

been removed, and to which that object has been reassigned.
e. Adjust both medoids of the cluster from which the object has been

removed, and to which that object has been reassigned.
f. Repeat steps c, d and e until a termination condition is held.

The algorithm may terminate either when there is no movement of objects or
the value of an objective function is not improving. This algorithm uses the aver-
age connectedness measurement, which is the sum of the distances between the
medoid of cluster, C, and other points within C.

f (Ç) =
∑k

i=1
∑n

j=1 DCV (xj , m̂i )

k
, (9)

where n is the number of points.
The implementation of the generalized k-means algorithm together with the

DCV metric may be summarized as follows:
To confirm this implementation, an experiment will be performed on a real data

set and the results analysed, in the following section.

5 Experiment and results

To test the performance of the DCV metric, the Mushroom data set was taken from
the UCI repository. The data set was originally drawn from the Audubon Society
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O−1 ← the inverse of relationship matrix (Ç);
Ç← initial partitions, and compute the summary tables;
for each Ci ⊆ Ç do m̂i ← medoid(Ci );
Compute initial value of clusters f (Ç).new;

Repeat
f (Ç). old= f (Ç).new;
for each x do
• adjust Ç such that x is removed from Ccluster(x)

to Cnearest(x);
• readjusted summary tables of Ccluster(x) and Cnearest(x);
• readjusted m̂cluster(x) and m̂nearest(x);

end-for
until f (Ç).new is not less than f (Ç).old

Algorithm 2. The implementation of the DCV metric.

Field Guide to North American Mushrooms [14]. The purpose of this experiment
is to test the DCV metric in conjunction with the generalized k-means algorithm
on this relatively large data set.

This data set includes descriptions of hypothetical samples corresponding to 23
species of gilled mushrooms in the agaricus and lepiota family. There are 8124
records in the original data set, each record involves 22 fields, all with nominal
data. Only one field, ‘stalk-root’, contains missing data. This field contains 2,480
missing values (denoted by ‘?’), and in this experiment these missing values were
removed. The ‘veil-type’ field has only one value (i.e. ‘p’), in which case it would
not be helpful in the discrimination between the characteristics of the Mushroom
data. Therefore, it was also removed from the experiment.

Firstly, the relation matrix, O, and the its values which represent the correla-
tion values between the fields were computed, for more detail see [1]. It may be
observed that the ‘veil-color’ field has a correlation value equal to 1, together with
the ‘stalk-color-above-r’ and ‘stalk-color-below-r’ fields. This indicates that the
‘veil-color’ field has a very strong correlation with these two fields. Secondly, the
inverse matrix, O−1 is computed, and the weight for each field is also computed.

Algorithm 2 was then implemented and run fourteen times using different input
values for the number of clusters (ranging from 2 to 15). The results are presented
graphically as Figure 1.

Figure 1 shows that there is a dramatic decrease in the quality measurement
between the second and third clusters, which then decreases more gradually to
Cluster 8. However, when the number of clusters is greater than 8, the rate of
change in the optimization criteria is both negligible and constant. Thus, 8 is prob-
ably the most appropriate number of clusters for this Mushroom data set.
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Figure 1: Results of the generalized k-means algorithm for clustering the Mush-
room data set.

6 Summary

Clustering has typically been a problem related only to continuous fields. However,
in data mining, data values are often categorical and cannot be assigned meaning-
ful continuous substitutes. This paper has been a study of this problem and the
DCV metric has been tested on a real data set, and the results of this experiment
shows that the DCV metric is a useful distance function for measuring similarity
in nominal data. However, in order to fully capitalize on this development, some
changes in the algorithm used have also been proposed.

The biggest advantage of the k-means algorithm in data mining applications is
its efficiency in clustering large data sets. However, its use is limited to numerical
values. The generalized k-means algorithm presented in this paper has removed
this limitation whilst preserving its efficiency.

These extensions allow us to use the k-means paradigm with different metric
spaces. In this paper, we used this algorithm to cluster nominal data without the
need for data conversion.

This combination of the generalized k-means algorithm and the DCV metric
has presented a new and exciting approach to the problems inherent in the effec-
tive analysis of data. Categorical data, in particular, deserves more attention in the
future. The results of these investigations are promising and prospects of more
successful analyses are good.
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