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Abstract

This paper introduces a novel sequence correlation measure that is fully sensitive
to both the ranks and magnitudes of the sequences under evaluation. This measure
can be more appropriate than the existing ones in those application scenarios in
which such a full sensitivity is desired. The applicability of the new measure in
data mining tasks is motivated.
Keywords: correlation indexes, clustering analysis.

1 Introduction

A problem that appears in different contexts of data analysis is that of comparing
two sequences A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} for which there is a
total order relation (≤) on their elements. This problem can be addressed by means
of correlation indexes, such as the well-known Pearson correlation coefficient [1,
2]. Aside from the huge applicability of such indexes in statistics [3, 4], there are
also different possible scenarios for their application to data mining tasks. In this
context, one may mention, for instance, the use of sequence correlation indexes
for feature selection as a pre-processing step for data clustering or classification
[5]. Another scenario for the application of correlation indexes to data clustering
or classification is the measurement of similarities in bioinformatics data sets [6].
For example, sequences A and B can refer to the responses of a given pair of
genes along a set of experiments (e.g. microarray) [7]. Since the trend of such
responses plays a fundamental role to describe the function and behavior of the
corresponding genes, correlation indexes have been widely used as measures of
similarity when dealing with this sort of data.
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A more traditional scenario for the application of correlation indexes in data
analysis regards the validation of a clustering structure by comparing it to an
expected structure [8, 9]. A typical example involves the assessment of hierarchical
clustering results. In this scenario, sequence A refers to the elements of the distance
matrix obtained by hierarchically clustering a given data set (cophenetic matrix).
Sequence B, in its turn, refers either to the elements of the distance matrix of
a baseline hierarchical clustering or to the elements of the original matrix of
distances between the data objects. The larger the correlation between the data
according to these (possibly ordinal) different distance matrices, the better the
matching between the obtained clustering structure/hierarchy and the referential
standard adopted.

The correlation indexes that are most used both in practice and in the literature
are possibly the well-known Pearson Product-Moment correlation coefficient
[1, 2], the Spearman’s coefficient [3, 4], and the Goodman-Kruskal/Kendall’s
indexes [4, 10, 11]. However, these measures are either insensitive to the ranks
(Pearson) or insensitive to the magnitudes (Spearman/Goodman-Kruskal/Kendall)
of sequences A and B under evaluation. When both sequences are on relevant
quantitative scales, it can be more appropriate to measure their correlation taking
into account both the relative orders (ranks) and the relative rates of increase
or decrease (magnitudes) between every pair of elements. The present paper
introduces a new correlation measure that is endowed with this property. The
new measure is a generalized (weighted) version of the Goodman-Kruskal index.
A slightly different version is also proposed that is a weighted version of the
Kendall’s index.

The remaining of the paper is as follows. The Goodman-Kruskal and Kendall’s
indexes are briefly reviewed in Section 2. Next, the Weighted Goodman-Kruskal
and Kendall’s indexes are introduced in Section 3. Then, a discussion is provided
in Section 4 and the final remarks are addressed in Section 5 together with some
perspectives for future research.

2 Review of the Goodman-Kruskal and Kendall’s indexes

The Goodman-Kruskal index measures rank correlation between two sequences
A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} in terms of the numbers of
concordant and discordant pairs in A and B [10, 11]. Pairs (ai, aj ) and (bi, bj )

are concordant if either ai < aj and bi < bj or ai > aj and bi > bj . Conversely,
they are discordant if either ai < aj and bi > bj or ai > aj and bi < bj .
The remaining cases are deemed to be neither concordant nor discordant (neutral)
(Simultaneous ties (ai = aj and bi = bj ) are also considered as neutrals from the
original probabilistic perspective of the index as a measure of association for cross-
classifications. In clustering or classification tasks, however, it makes more sense
to count a simultaneous tie as a concordance.). The index is then defined as [8, 9]:

γ = S+ − S−
S+ + S−

(1)
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where S+ and S− are the numbers of concordant and discordant pairs in A and B,
respectively. Clearly, γ ∈ [−1, 1].

In principle, the running time complexity of this index may seem to be
necessarily proportional to the number of non-ordered pairs in sequences A and
B, that is, O(n2). However, it is possible to demonstrate that the computations
can actually be done in O(n log n) time by using a smarter (yet more complicate)
algorithm based on a divide-and-conquer strategy.

A variant of the Goodman-Kruskal index in (1), so-called Kendall’s index, is
given by [4, 8]:

τ = S+ − S−
n(n − 1)/2

(2)

Note that the only difference is that this variant takes all the n(n−1)/2 non-ordered
pairs into account in the denominator, no matter whether they are concordants,
discordants, or neutrals. Doing so, it differs from the Goodman-Kruskal index
in that it punishes neutrals, for they are included into the denominator. Indeed,
the Kendall’s index cannot reach its maximum (τ = 1) whenever there are
neutrals.

The idea behind the Goodman-Kruskal and Kendall’s indexes, though very
appealing, hide a possible shortcoming of these indexes, which is their insensitivity
to the element values of sequences A and B. Indeed, only the ranks of these
elements are taken into account in equations (1) and (2). This approach may not be
adequate in that it gives the same (unitary) importance to any rank permutation in
one sequence with respect to the other, no matter the values of the corresponding
elements. In other words, any couple of concordant or discordant pairs in A and B

counts the same amount in (1) and (2). When comparing two distance matrices
A and B of a given data set, for instance, this makes the indexes unable to
differentiate between a big and a small mistake made in the relative distances in
A with respect to B. On the other hand, conventional distance measures like the
squared norm can capture only the absolute differences between every element
of A and the corresponding element of B. However, the structure of the data is
represented by the relative differences between the elements of a given distance
matrix, both in terms of their relative orders (ranks) and values (magnitudes).
For this reason, a generalized (weighted) version of the Goodman-Kruskal and
Kendall’s indexes is proposed in the next section.

3 Weighted Goodman-Kruskal and Kendall

This section elaborates on a new index that brings together both the sensitivity
of the Goodman-Kruskal index to the rankings of sequences A and B and the
sensitivity of the Pearson Product-Moment index to the values of these sequences
(when they are both on quantitative scales). It can be derived from a generalization
of an alternative formulation for the Goodman-Kruskal index, as discussed in the
sequel.
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3.1 Goodman-Kruskal and Kendall’s indexes revisited

The Goodman-Kruskal index in (1) can be rewritten in equivalent form as:

γ =
∑n−1

i=1
∑n

j=i+1 wij∑n−1
i=1

∑n
j=i+1 |wij |

(3)

where | · | stands for the absolute value operator and the terms wij are defined as
(Note that this definition is in conformity with the convention that a simultaneous
tie is counted as a concordance.):

wij =




wA
ij /w

B
ij if wB

ij �= 0

1 if wA
ij = 0 and wB

ij = 0

0 otherwise

(4)

with wA
ij = sign(ai − aj ), wB

ij = sign(bi − bj ), and function sign(x) defined such
that it takes values −1, 0, and +1 for x < 0, x = 0, and x > 0, respectively. The
Kendall’s index in (2) can also be obtained in equivalent form by replacing the
denominator in (3) with n(n − 1)/2.

3.2 Weighted formulation

By looking at definitions (3) and (4) it turns out that the Goodman-Kruskal and
Kendall’s indexes are magnitude insensitive because the quantities in (4) are
discrete and constrained to −1, 0, or +1, no matter the values of the entries
in sequences A and B. In other words, pairs (ai, aj ) and (bi, bj ) are fully
concordant or discordant no matter how much they agree or disagree. By noting
that concordance and discordance are both a matter of degree, a weighted version
of those indexes can be obtained by replacing the terms in the numerator of (3)
with continuous versions of the weights wij , wA

ij , and wB
ij in (4), which can be

redefined as:

ŵij =




min{ŵA
ij /ŵ

B
ij , ŵB

ij /ŵ
A
ij } if ŵA

ij and ŵB
ij have the same sign

max{ŵA
ij /ŵ

B
ij , ŵ

B
ij /ŵA

ij } if ŵA
ij and ŵB

ij have opposite signs

1 if ŵA
ij = 0 and ŵB

ij = 0

0 otherwise

(5)

ŵA
ij =




ai − aj

amax − amin
if amax �= amin

0 otherwise
(6)

ŵB
ij =




bi − bj

bmax − bmin
if bmax �= bmin

0 otherwise
(7)

where amax = max{a1, a2, . . . , an}, amin = min{a1, a2, . . . , an}, bmax =
max{b1, b2, . . . , bn}, and bmin = min{b1, b2, . . . , bn}.
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Note that both ŵA
ij and ŵB

ij belong to [−1,+1] and represent the (signed)
percentage differences between the values of the ith and j th elements of the
corresponding sequences. The weight ŵij ∈ [−1,+1], in turn, is such that: (i)
it is positive if pairs (ai, aj ) and (bi, bj ) are concordant (ŵA

ij and ŵB
ij have the

same sign or both are null); (ii) it is negative if (ai, aj ) and (bi, bj ) are discordant
(ŵA

ij and ŵB
ij have opposite signs); and (iii) it is null in case of a neutral (either ŵA

ij

or ŵB
ij is null).

Full concordance (ŵij = 1) is obtained when ŵA
ij = ŵB

ij . This means that the
relative difference between the ith and j th elements of A matches perfectly the
relative difference between the corresponding elements of B. This exact match
includes the sign, meaning that the relative order of the elements is also respected.
Full discordance (ŵij = −1), in its turn, is obtained when ŵA

ij = −ŵB
ij , that is,

when the relative differences between the ith and j th elements of A and B have the
same magnitude yet opposite signs (i.e. opposite relative orders). At a first glance,
this may sound incorrect if the reader is misled to think that a larger difference
between |ŵA

ij | and |ŵB
ij | should mean a greater discordance between pairs (ai, aj )

and (bi, bj ). That’s not true. Indeed, it follows that, in relative terms, increasing the
absolute value of one of these weights is equivalent to reducing the absolute value
of the other. But reducing the absolute value of a given weight means driving this
weight towards zero and further changing sign. This means reducing discordance
towards neutrality and further turning to concordance.

Bearing the above remarks in mind, the weighted Goodman-Kruskal index can
thus be defined as:

γ̂ =
∑n−1

i=1
∑n

j=i+1 ŵij∑n−1
i=1

∑n
j=i+1 |wij |

(8)

where ŵij and wij are given by equations (5) and (4), respectively. The weighted
version of the Kendall’s index can be obtained in equivalent form by replacing the
denominator in (8) with n(n − 1)/2.

It can be shown that, as it is the case for the Pearson coefficient, the maximum
value for the weighted versions of the Goodman-Kruskal and Kendall’s indexes
(γ̂ = 1) is obtained iff there exist two real-valued scalars c > 0 and d such that
ai = cbi + d for i = 1, . . . , n, i.e., iff A is a linear (or affine) function of B with
positive angular coefficient. Analogously, it can also be shown that the minimum
value (γ̂ = −1) is obtained iff there exist two real-valued scalars c < 0 and d

such that ai = cbi + d for i = 1, . . . , n, which means that one of the sequences
becomes precisely an amplified/attenuated and/or shifted version of the other in
inverse order when they are simultaneously rearranged so that one of them gets
sorted.

Finally, it is straightforward to verify that the time complexity of the proposed
weighted versions of the Goodman-Kruskal and Kendall’s indexes is O(n2) if they
are computed using (8). Whether computing these weighted indexes in less than
O(n2) time is possible or not is still an open question that may be subject of future
research.
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4 Discussion

It is important to stress the difference between scenarios involving and not involv-
ing sequences on quantitative scales. Recalling back to the preliminary discussions
in the introduction, a typical scenario for the application of sequence correlation
indexes to data analysis refers to the comparison of a hierarchical clustering cophe-
netic matrix (sequence A) against another distance matrix obtained from the data
set (sequence B). These matrices can be composed of either ordinal measurements
(both A and B are not on quantitative scales) or continuous measurements (both
A and B are on quantitative scales). Another usual scenario where both A and
B are on quantitative scales regard, for instance, the measurement of similarity
between data objects described by real-valued attributes (e.g. gene-expression
data).

If sequences A and B are not on relevant quantitative scales, then either the
original (non-weighted) Goodman-Kruskal/Kendall’s indexes or the Spearman’s
coefficient should be used because neither rely on the magnitudes of the entries
in A and B. Instead, if both sequences are on relevant quantitative scales, then
either the proposed Weighted Goodman-Kruskal/Kendall’s indexes or the Pearson
Product-Moment correlation coefficient should be used because both rely on the
magnitudes of the entries in A and B. The choice between the proposed indexes
and the Pearson coefficient can be made in terms of scalability and sensitivity.
If scalability is important, then the Pearson coefficient may be the best choice
because it can be very efficiently computed in O(n) time. If this is not an issue,
then the Weighted Goodman-Kruskal or Kendall’s indexes should be adopted
because they are fully sensitive to both the magnitudes and rankings of A and
B (at the price of an O(n2) time complexity).

5 Conclusions and future work

A Weighted formulation for the Goodman-Kruskal and Kendall’s indexes have
been proposed that can be more appropriate than the original (non-weighted)
indexes for measuring the correlation between two sequences of numbers that
are both on relevant quantitative scales. The proposed indexes can also be more
appropriate than other existing correlation measures (e.g. Pearson) when full
sensitivity to both the ranks and magnitudes of the sequences under evaluation
is a desired property. It has been discussed in the paper that such a full sen-
sitivity may in fact be desirable in different contexts of data analysis and data
mining.

There are different research lines that started from this preliminary work and that
are currently being investigated. For instance, a study about theoretical properties
of the proposed indexes that can be of particular interest to the data mining
community is on the way. In addition, comparisons of the proposed indexes against
existing indexes have been worked out in several different aspects. The authors
intend to report the results of such an ongoing work in future papers.
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