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Abstract 

In this paper we extend prior efforts to engineer an efficient mapping of volatility 
transmission across various western- and central-European government bond 
markets.  Prior research efforts report that the closed-form derivation of the 
regularization parameter embodied by the Kajiji-4 RBF ANN results in an 
efficient minimization of the ill-effects of multi-collinearity while attaining 
maximum smoothness in nonparametric time series analysis.  This computational 
innovation provides the raison d’être for a comparative re-examination of 
volatility spillover effects obtained from the study of parametric-based 
conditional volatility investigations.  The current research calibrates the Kajiji-4 
ANN to produce new evidence on volatility flows.  The two step research 
method focuses first on the art of ANN engineering of financial time-series.  The 
method then focuses on the resultant modelling efficiency by introducing an 
investigatory ARCH-framework as well as a classification-directed ANN.  The 
post-modelling efficiency tests certify the ex-ante expectation for the Kajiji-4 
RBF ANN to produce residuals that are devoid of latent economic covariance 
and conditional volatility effects.  Moreover, we find that the estimated Kajiji-4 
network parameters yield corroborative evidence that supports the broader 
findings in the extant literature on bond volatility-spillover effects. However, the 
non-parametric approach also produced results that challenge some 
contemporary findings.  Most notably, the research findings contradict the view 
of a weak US volatility-spillover into EMU countries with a correspondingly 
strong spillover effect for non-EMU countries. 
Keywords:  volatility, spillovers, bond markets, neural networks, radial basis 
functions, artificial neural networks. 

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications  263

doi:10.2495/DATA070261



1 Introduction 

The recent convergence of two allogeneous disciplines, financial and 
computational engineering, has created a new mode of scientific inquiry.  In this 
paper, we seek to utilize the innovation inherent in financial engineering to 
provide a new and expanded window into the structure of volatility spillovers in 
European government bond markets.  The specific aim of this research is to re-
examine reported findings that describe the effects of volatility spillovers from 
the United States (US) and aggregate European government bond markets into 
the government bond markets of two EMU countries (Germany in the west and 
Spain in the south) and two non-EMU countries (northerly Sweden and central 
European member Slovenia).   The analytical examination is developed in two 
stages.  The initial stage focuses on the process of engineering a complex 
nonlinear artificial neural network (ANN) mapping of government bond excess 
returns.  To accomplish this step the current research exploits the Kajiji-4 radial 
basis function (RBF) ANN.  The algorithm has proven to be a fast and efficient 
topology for mapping financial instrument volatility across various time intervals 
[for example, Dash and Kajiji [10] use the algorithm to successfully model daily 
volatility asymmetries of FX futures contracts and, similarly, Dash, et al. [9] 
employ the method to forecast hourly futures options ticks].  The second stage 
establishes the overall effectiveness of the ANN to control for the known 
conditional volatility properties that define transmission linkages among 
government bond excess returns.  The testable volatility spillover model 
preferred for the research inquiry can be traced to a panoptic review on market 
contagion by Christiansen [7].  The ANN models formulated here are further 
influenced by the linear regression-based methods of Bekaert and Harvey [2, 3], 
the VAR methods of Clare and Lekkos [8], and associated extensions offered by 
Ng [16].  We also take into consideration associated refinements detailed in 
Bekaert, et al. [4], and in Baele [1].    However, it is the Christiansen approach 
that sets a foundation for the two-stage modelling experiment that defines this 
research.   

1.1 The volatility spillover model 

The issues of time-varying volatility of financial time series are well 
documented.  The ARCH model process of Engle [11] exploited this 
autoregressive property where historical events leave patterns behind for a 
certain time after some initial action.  The GARCH model of Bollerslev [5] 
introduced the ability to examine volatility in terms of conditional 
heteroscedasticity in that the variance, which is now conditional on the available 
information, varies and also depends on old values of the process.  The existence 
of volatility leverage effects in financial time series, the observation that bad 
news has a larger impact on volatility than does good news, is also a well-known 
phenomenon (e.g. Koutmos and Booth [13] and Booth, et al. [6]).  The 
EGARCH model of Nelson [14] and Nelson and Cao [15] has proven to be 
nearly ideal for capturing the leverage effects that define the overall market 
behaviour of financial instruments.  Recent results provide new evidence that 
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own bond-market effects are significant and exhibit asymmetric impacts in the 
volatility generating process.  The generation of this new knowledge was 
inextricably linked to the innovative use of new modelling methodology 
     Within the context of the Christiansen methodology, we engineer a nonlinear 
ANN approach that is not unwieldy, over-parameterized, nor difficult to test 
within the temporal of bond volatility.  We begin by defining the conditional 
return on the US government bond index as an AR(1) process: 

, 0, 1, , 1 ,US t US US US t US tR b b R −= + + ε .    (1) 

In this model, the idiosyncratic shock ( ,US tε ) is normally distributed with a mean 

of zero ( ,| | 0i tE ε = ), is uncorrelated , ,( | | 0; )i t j tE i jε ε =   ∀ ≠ , and the 
conditional variance follows an asymmetric EGARCH(1,1) specification;   

2 2 2
, , 1 , 1US t US US US t US US te − −σ = ω + α + γ σ .                                   (2) 

Specifically, the generalized EGARCH model implemented for all excess bond 
return generating models presented in this section is represented by: 
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In our formulation, the parameter γ is set to 1. In this research we re-estimate the 
degree to which economic shocks in the aggregate European government bond 
market influence the return-generating process of individual European countries 
by the application of the ANN econometric model.  The conditional excess 
return on the European total return government bond index is assumed to be a 
multi-factor AR(1).  The model is specified as: 

, 0, 1, , 1 , 1 , 1 , 1 , ,E t E E E t E t US t E t US t E tR b b R R− − − −= + + γ + φ ε + ε .  (7) 
In this system, the conditional mean of the European bond excess return depends 
on its own lagged return as well as the spillover effects introduced by the lagged 
US excess return, , 1US tR − , and the US idiosyncratic risk shock, ,US tε .  Following 
the previous assumption, the conditional variance of the idiosyncratic risk shock 
( ,E tε ) is assumed to follow an asymmetric EGARCH(1,1) specification: 
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subject to the usual restrictions (e.g. eqns. 4-6). 
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     The second ANN econometric specification described here is a model that is 
capable of describing the conditional return generating process for the i-th 
individual European country government bond market from among the N 
markets included in the study.  That is, for country i, the conditional excess 
return is determined by: 

, 0, 1, , 1 , 1 , 1 , 1 , 1 , 1 , , 1 , ,i t i i i t i t US t i t E t i t US t i t E t i tR b b R R R− − − − − − −= + + γ + δ + φ ε + ψ ε + ε     (9) 
Within this model statement the conditional excess return depends upon the 
lagged performance of own country return as well as that of the US and 
aggregate European bond markets.  More specifically, the US and European 
spillover to the i-th country is captured by the lagged returns , 1US tR −  and , 1E tR − , 
while volatility spillover effects are captured by ,US tε  and ,E tε , idiosyncratic 
shocks from the regional conditional return estimations, respectively.  Finally, 
and for completeness, again we note that the idiosyncratic shocks for all N 
country models are subject to the same EGARCH(1,1) distributional 
assumptions as shown in eqn. (10) and associated constraints shown in eqn (4) to 
eqn. (6) as previously defined for the expected behaviour of the regional return 
index.     

2 2
, 1

1 1
ln( ) ( ) ln( )

q p

i t k t j t j
k j

g z − −
= =

ε = ϖ + α + γ ε∑ ∑ .                   (10) 

With the return generating process identified for all bond indices associated with 
expected volatility spillover effects, the emphasis shifts directly to the nonlinear 
modelling features provided by the application of a neural network methodology. 

2 Data 

Weekly data for all government total return bond indices under study are 
obtained from Global Financial Data for the period May 2003 to January 2005 
inclusive (a total of 90 observations).  Non-synchronous data issues are partially 
reduced by the use of weekly data.  The two EMU-member countries, Germany 
(REX government bond performance index) and Spain (Spain 10-year 
government bond total return index), and the two non-EMU countries, Sweden 
(government bond return index w/GFD extension and the Slovenia 10-year 
government bond yield index) define the European local market. The US effect 
is sampled by the inclusion of the Merrill Lynch U.S. government bond return 
index.  Lastly, the JP Morgan European total return government bond index 
samples the aggregate European government bond market.  Total return indices 
are preferred as they are derived under the assumption that all received coupons 
are invested back into the bond index.  The descriptive statistics for these indices 
are presented at: http://www.nkd-group.com/research/cf2006/cf2006-exhibits.pdf 
in table A.  All further mention of online tables refers to the URL presented. 

3 ANN estimation of volatility spillover 

In this section of the paper we estimate bond market spillover effects by applying 
the Kajiji-4 RBF ANN to the aggregate European bond model of eqn. (7) and to 
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the individual country model as shown in eqn. (9).  However, before the exact 
estimation of spillover effects is presented, we provide algorithmic detail as it 
pertains to the ANN modelling methodology.  Section 3.1 differentiates the 
enhanced dual objective Kajiji-4 algorithm from the more traditional uni-
objective RBF ANN.  Section 3.2 is devoted specifically to data transformation 
and scaling.  Section 3.3 to 3.5 relate to the specifics of generalizing the 
application of the Kajiji-4 RBF ANN to modelling of European government 
bond returns and their associated volatility.   Section 3.6 discusses the policy 
implications. 

3.1 The multiple-objective RBF ANN architecture 

Kajiji [12] reasoned that some modelling problems are best examined by 
considering at least two objectives: smoothness and accuracy.  To achieve these 
dual objectives, Kajiji augmented the generalized RBF to include a modified 
Tikhonov and Arsenin [17] regularization equation. Tikhonov regularization 
adds a weight decay parameter to the error function to penalize mappings that are 
not smooth.  By adding a weight penalty term to the SSE optimization objective, 
the modified SSE is restated as the following cost function: 

( )2 2

1 1

ˆ ( )
p m

i i j j
i j

C y f x k w
= =

= − +∑ ∑                                  (11) 

where kj are regularization parameters or weight decay parameters.  Under this 
specification the function to be minimized is stated as: 

 2 2

1 1

argmin ( ( | ))
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i i j j
i j

C y f x k k w
k

ς
−

= =

 
= − + 

 
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3.2 Data scaling by transformation 

Neural networks learn more efficiently with lower prediction errors when the 
distribution of input variables is modified to better match outputs.  The point to 
emphasize here is the importance of data scaling by one of any number of 
recognized transformations as an integral part of the neural network engineering 
process.  The Kajiji-4 RBF ANN supports several alternative data transformation 
algorithms.  For the bond volatility modelling application described herein, we 
choose to scale the data by the Normalized Method 1 which scales the data to [0, 
1.01] when SL = 0% and SU = 1%.  For the definition and algorithmic details of 
the Normalized Method 1 see the online tables B and C. 

3.3 Algorithmic parameterization and efficient supervised learning 

The parameterization of the RBF network begins with the judicious choice of a 
transfer function.  Neural network researchers understand that sigmoidal 
functions may be better estimates for some data, while Gaussian functions may 
be better approximators for other kinds of data.  RBF ANN algorithms are 
trained to predict the target variable by supervising the use of an increasing 
number of cases (observations) on the input variables up to the point where 
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modelling improvements become redundant.  Overfitting occurs at the point 
where the ANN ceases to learn about the underlying process but, instead, it 
begins to memorize the peculiarities of the training cases.   The results of solving 
a simulation to determine the optimal number of cases over which to train 
individual country models is exemplified by Figure 1. 
 

Simulation Results
Fitness Error

Min Headroom

1

0

F
itn

es
s 

E
rro

r

2.12e-5
2.11e-5
2.10e-5
2.09e-5
2.08e-5
2.07e-5
2.06e-5
2.05e-5
2.04e-5
2.03e-5
2.02e-5
2.01e-5
2.00e-5
1.99e-5
1.98e-5
1.97e-5
1.96e-5
1.95e-5
1.94e-5
1.93e-5
1.92e-5
1.91e-5
1.90e-5
1.89e-5
1.88e-5
1.87e-5
1.86e-5
1.85e-5
1.84e-5
1.83e-5
1.82e-5
1.81e-5
1.80e-5
1.79e-5
1.78e-5
1.77e-5
1.76e-5
1.75e-5
1.74e-5
1.73e-5
1.72e-5

Training Size
Training Size

605856545250484644424038363432302826242220181614121086

 
Figure 1: Simulation results. 

3.4 The estimated Kajiji-4 RBF ANN spillover model 

The output measures generated by an application of the Kajiji-4 RBF ANN for 
the individual European country government bond spillover models show 
interesting results.  We note the value of R-square is evenly reported across 
countries, ranging from a low of 86.27% (Germany) to a high of 87.37% 
(Sweden).  Additionally, the two ANN performance measures defined as 
Direction and Modified Direction each report accuracy and consistency across all 
countries.  The Direction measures range from a low of 0.71 for Slovenia to a 
high of 0.77 for Spain and Sweden.   Similarly, the modified directions measure 
ranges from a low of 0.61 for Slovenia to a high of 0.76 for Sweden.  Further 
details are available online in table D.  Fig. 2 presents a visual reference of 
overall prediction accuracy.  

3.5 Characteristics of the RBF generated residuals 

Descriptive statistics for country-level idiosyncratic residual returns obtained by 
the application of the Kajiji-4 spillover model were calculated (see online table 
E). The Shapiro-Wilkes’ test for normality (W-statistic) confirmed the 
expectation of non-normality.  The autocorrelation patterns among the residuals 
are somewhat mixed.  In summary, we find that applying the Kajiji-4 RBF ANN 
to the government bond spillover model for European markets results in a 
solution where the idiosyncratic residual returns exhibit moderate nonlinear 
dependence, an absence of skewness at the individual country level, and, except 
for Germany, moderately heavy-tails. 

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 38,

268  Data Mining VIII: Data, Text and Web Mining and their Business Applications



Actual and Predicted
Germany

Actual Predicted

01/06/0512/07/0411/07/0410/08/0409/08/0408/09/0407/10/0406/10/0405/11/0404/11/0403/12/0402/11/0401/12/0412/13/0311/13/0310/14/0309/14/0308/15/0307/16/0306/16/03

0.15

0.14

0.13

0.12

0.11

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

-0.08

-0.09

-0.1

-0.11

-0.12

-0.13

-0.14

 

Figure 2: Kajiji-4 RBF-ANN actual and predicted values (Germany). 

     We also note that the reported EGARCH results (online table F) fail to 
identify significant residual return dependence and leverage effects among the 
EMU countries.  That is, none of the explanatory variables are jointly significant 
for any of the bond indices.  This finding does not hold for the two non-EMU 
countries – Sweden and Slovenia; a finding that augers for a corroborating 
interrogation of the ANN generated residuals. 
     The residual analytics were expanded to test for statistical independence.  
Specifically, we applied a principal components analysis (PCA) to the European 
residuals in order to uncover whether the observed distributional properties are 
related by latent hidden factor(s).  The results produced one-factor dominance.  
A single dominant factor from the PCA analysis provides evidence that the RBF 
ANN spillover model removed a significant amount of any linearly related 
economic volatility from the excess returns of all country specific European 
government bonds.  The factor loading structure is presented online in table G. 
     Nonlinear diagnostics were also employed to test for statistical independence.  
In this case a Kohonen self-organizing map (K-SOM) was applied to the RBF 
generated residuals.   Unlike the PCA solved above, the K-SOM method does 
not impose any distributional assumptions on the components.   Based on a 
accumulated review of the parametric analysis of the RBF ANN residuals as well 
as the non-parametric optimal solution from the K-SOM (online figure A), it is 
factually apparent that the Kajiji-4 RBF ANN spillover model achieved its 
appointed task – to model the time-dependent sources of volatility spillover 
effects in a cross-section of European government bond markets.   

3.6 Policy implications 

For the most part, the empirical results for individual government bond markets 
corroborate extant findings for post Euro-conversion (Christiansen [7]).  
Inferences drawn from the signed weights produced by solving the RBF ANN 
model are consistent in their identification of a larger US mean-spillover effect 
into the German market than that caused by the aggregate European bond market 
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(0.2520 and –0.1692, respectively).  This finding is contrasted by the results for 
the other EMU country, Spain.  In this case the US mean spillover effect is about 
100 times smaller than that generated by the aggregate European bond markets 
(–0.1560 and 15.4974, respectively).  The results for non-EMU members 
Sweden and Slovenia also offer some contrasts.  For northern neighbour Sweden, 
the impact of the aggregate European spillover effect is 27 times that of the US 
mean spillover effect (6.203 and 0.2249, respectively).  Whereas in the case of 
eastern-bloc Slovenia the result is a small inverse spillover effect to the US bond 
markets (-0.1393) with a moderate domestic effect recorded in Slovenia from the 
aggregate European bond markets (0.6621).  Clearly, for the time period of this 
study, Slovenia’s post-communism transition to World Bank donor status, near 
membership in NATO and the EU along with its close relationship with trading 
partners Germany, Italy, Austria and other EU countries is accurately reflected in 
the metrics as estimated by the RBF ANN spillover model. 

Table 1:  RBF ANN spillover model weights. 

Return 
Generating 
Model 

Lagged 
Country 

( )1,tb
 

Lagged  
Euro 

( ), 1i t −δ
 

Lagged 
USA 

, 1i t −γ  

Euro 
Residual 

, 1i t −ψ  

USA 
Residual 

, 1i t −φ  
USA n/a n/a 0.4137 n/a n/a 
Euro n/a 0.1470 0.1328 n/a 0.1385 
Germany  0.2670 –0.1692 0.2520 –0.0760 0.1629 
Sweden 2.0330 6.2023 0.2249 1.8278 –9.7189 
Spain 3.5540 15.4974 –0.1560 3.6120 –21.8662 
Slovenia 0.1146 0.6621 –0.1393 –0.1347 –0.0863 

4 Summary and conclusions 

This paper investigated the structure of volatility spillover effects across EMU, 
non-EMU, western- and central-European government bond markets by the 
application of innovative computational financial engineering analytics.  The 
Kajiji-4 RBF ANN network produced an efficient separation of global, regional 
and local volatility effects.  The econometric significance of these findings was 
interrogated by applying both a parametric and non-parametric examination to 
the estimated time series residuals.  In each case, PCA for the linear and K-SOM 
for the nonlinear analytics, the search for independence within the residuals was 
confirmed.  The econometric modelling experiment produced several important 
policy findings that provide a foundation for future consideration in research that 
relies upon nonlinear mappings of economic time series by intelligent networks.  
Key among these findings was the presentation of evidence that clearly 
highlighted the perceived differences between the government bond markets of 
EMU, non-EMU and central-European countries.  Among other findings, this 
fact alone suggests that as EMU affiliated countries expand policymakers should 
take immediate and ongoing actions to address the practical aspects of the 
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planned changeover to the euro.  Such actions range from meeting the euro-zone 
2 % inflation rate to effective control of ethical decision-making in all aspects of 
business and government decision-making. 
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