
A simple approach to temporal data in
relational DBMS

M. K. Crowe
University of Paisley, UK

Abstract

Recent articles and research issues suggest that temporal data remains a source of
difficulty to database designers and implementers.
 This paper analyses some of the issues and suggests some mechanisms that
could help simplify the problems, notably a new derived column concept for
NEXT, a new temporal join operator and temporal predicates CURRENT and
AT. However, the suggestions avoid adding any new data types or table types
and the language extensions are in the spirit of the SQL standard. The paper
includes full details of the proposed specification of these functions in the style
of the SQL standard. These specifications are implemented in version 1.2 of the
Pyrrho DBMS, an (otherwise) SQL-2003 compliant relational DBMS.
Keywords: temporal data, DBMS, relational database, fold, interleave.

1 Introduction

Zimanyi [2] includes in his paper an excellent introduction to the history of the
SQL/Temporal proposal, and how it did not find a place in as Part 7 of SQL2003
[4], and his article contains numerous examples of temporal data and excellent
accounts of how temporal manipulations of such data can be effected using
standard SQL.
 He largely follows the original approach of Snodgrass [5] and the proposed
SQL/Temporal language in defining a temporal database table as one in which
there is one or two added pairs of columns FromDate and ToDate (when two
pairs are added one is for “valid time” and the other for “transaction time”). This
approach has been criticised as misconceived by Date et al [6]: certainly it seems
an overly mechanistic approach to a series of subtle semantic problems (Gabbay
and McBrien [7]).

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 115

doi:10.2495/DATA070121

 Date et al first note that transaction time information is rather special and
should be left to the database logs. For semantically-useful temporal data, they
prefer to work with explicitly declared columns (so that tables may contain
several temporal columns). Their temporal columns are of an interval type
(different from SQL intervals) corresponding to the FromDate and ToDate pairs
in Snodgrass’s approach, and they build on the Allen operators to develop subtle
relational operations for such temporal data.
 The starting point of this paper is that ToDate columns contain derived data,
and we explore instead an approach where such columns, if required, can be
always calculated from other data in the tables. To motivate such a radical step,
we observe that where ToDate columns are not treated as derived, their values
must be heavily constrained and subtle arrangements made to update them every
time that temporal data in the database is updated.
 An extension (a derived column called NEXT) to the SQL standard,
documented in this paper, provides a very simple way of computing ToDate,
which then becomes a virtual column. There is no need for ToDate to be stored
in the database, and, as we shall see, examples where a ToDate has been set
explicitly fare better with a different data model. By eliminating the ToDate
columns, a huge simplification occurs in the temporal database problem.
 By this route we are led to define a very simple concept of “temporal table”,
which requires no special syntax or semantics, but with associated new concepts
of CURRENT, AT and TEMPORAL JOIN. This paper gives the changes to the
SQL standard that would result from the adoption of these ideas.

2 Database tables and historical records

Many DBMS’s allow access to previous states of the data (called rollback
DBMS in the temporal database literature). For such databases, every base table
implies the existence of an underlying temporal table, based on transaction time.
This underlying table in generally not stored explicitly in the database but its
contents are reconstructed from logs when required. For example, the Pyrrho
DBMS provides a construct ROWS(nn) which provides a synopsis of the log
entries for a given base table, and allows previous states of the table and
associated transaction times to be retrieved using ordinary query language.
 But it might be as entirely legitimate to make a correction to one of the since
or until dates in the People table as it would be to fix the BirthDate of an
employee. Such a correction would be unusual, and would continue to be shown
in history reports based on logs.
 Using information from logs may look an attractive way of addressing the
problems of temporal data in simple cases. In practice the presence of corrections
to data can make such an approach unusable, and alternatives need to be
considered.

2.1 Semantics of date data

To motivate the approach of this paper, consider a People table which records
departmental affiliation. Rather than use logs for historical information, we
create a new entry for Fred when he changes department.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

116 Data Mining VIII: Data, Text and Web Mining and their Business Applications

Table 1: A People table with start and end dates.

Name Dept PostSince PostUntil
Fred D1 2005-10-02 2005-12-01
Fred D2 2005-12-01
Joe D1 2006-03-25
Mary D1 2005-10-08 2006-06-21

 The primary key for this table now consists of (Name,PostSince) date (since
there is nothing to stop Fred moving back to his old department later on). Note
that in this Figure, Mary’s departure is recorded by updating her record by giving
a PostUntil value.
 The temporal database literature provides a number of constraints and rules to
ensure that entries in the PosUntil field make sense. For example, if we add a
new entry to record Fred’s move to department D3 we require also to update the
old one with the correct PosUntil field. We could require such a change to be
handled by a stored procedure which automatically computes and enters the
PostUntil field for his previous post, and trigger mechanisms could achieve this.
 However, the viewpoint of this paper is that the two entries in the PostUntil
column here have different semantics. We distinguish between the automatic
calculation of PostUntil from a new entry, and the recording of the departure of
an employee:

Table 2: The People table with start and end dates.

Name Dept PostSince PostUntil LeavingDate
Fred D1 2005-10-02 2005-12-01
Fred D2 2005-12-01
Joe D1 2006-03-25
Mary D1 2005-10-08 2006-06-21 2006-06-21

 In this table, the values of PostUntil can actually be calculated as
COALESCE(NEXT, LeavingDate), using the new function NEXT presented
later in this paper. This allows us to dispense with the PostUntil column: there is
no need ever to store it in the database.

Table 3: The final version of the People table.

Name Dept PostSince LeavingDate
Fred D1 2005-10-02
Fred D2 2005-12-01
Joe D1 2006-03-25
Mary D1 2005-10-08 2006-06-21

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 117

 In this final version, a personnel history is very simply found as SELECT *
FROM PEOPLE (provided Mary’s record has not been deleted yet), and the
current list of employees is SELECT * FROM PEOPLE WHERE
CURRENT(PostSince) AND LeavingDate IS NULL. If the PostUntil column is
required it can be calculated using the formula given above. The database logs
can still be used to examine expired records that have been deleted and to track
what changes have been made to the data over time.
 A naïve query about which department Fred works in will now give two
answers, one of which is out of date. We can overcome this by renaming the
tables so that the table in Table 3 is called PeopleHistory and using a view
(stored query) so that SELECT * FROM PEOPLE table gives the expected
information (one record for Fred, none for Mary) from the PeopleHistory table.
A primitive predicate CURRENT, defined using another derived column LAST
can ensure that this operation is very efficient. We give some examples of this
process below.

2.2 Folding and interleaving

With “semitemporal” tables like Figure 3, it is likely that for the most part each
time period will correspond to a new value (of salary, or PNumber say).
In general it can happen that the result of query Q contains extra rows, as in
Table 4.

Table 4: A table where folding would be useful.

Column1 Column2 FromDate
AAA BBB 2005-06-18
AAA BBB 2006-04-11
AAA CCC 2006-07-05

 Here all columns apart from the temporal columns match, and the intervals in
the temporal columns are adjacent. We really need to combine the rows to obtain
Table 5.

Table 5: A folded version of Table 4.

Column1 Column2 FromDate
AAA BBB 2005-06-18
AAA CCC 2006-07-05

 Denote the result as

Q FOLD

 The FOLD operation requires that its operand is a semitemporal table, i.e. has
a primary key whose last component is temporal. The result of folding is a
temporal table, and NEXT and LAST can be defined in meaningful ways.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

118 Data Mining VIII: Data, Text and Web Mining and their Business Applications

 The inverse of FOLD is INTERLEAVE, where additional temporal values are
inserted into a temporal table. Table 4 can be obtained from Table 5 by the
INTERLEAVE operation. If Q1 gives the result shown in Figure 5, then Figure 4
is obtained by

Q1 INTERLEAVE FromDate WITH VALUES (date ‘2006-04-11’)

2.2.1 Joined tables
Let us suppose that we continue to adopt the approach of Figure 3. Suppose we
start with two such tables, Salary and Affiliation.

Salary: (SSN, Amount, AmountSince)

Affiliation: (SSN, DNumber, DNumberSince)

 The natural join of these two tables is not very useful.
 If we want to omit the second row here, and to combine the date columns to
create a new temporal table we should like to end up with Table 7.

Table 6: A natural join of temporal data.

SSN Amount AmountSince DNum DNumSinc
12354789 14500 2004-02-05 D5 2004-02-05
12354789 15000 2005-06-08 D5 2004-02-05
12354789 14500 2004-02-05 D1 2005-01-15
12354789 15000 2005-06-08 D1 2005-01-15
etc

Table 7: A temporal join of two tables.

SSN Amount DNum DateSince
12354789 14500 D5 2004-02-05
12354789 14500 D1 2005-01-15
12354789 1500 D1 2005-06-08
…

 In fact we define precisely this operation later is this paper as

SELECT * FROM Salary TEMPORAL JOIN Affiliation AS DateSince

2.2.2 SQL2003 proposals
The following paragraphs are suggested modifications to SQL 2003: ISO/IEC
9075-2:2003 Information Technology – Database Languages – SQL – Part 2:
Foundation (SQL/Foundation) to implement the ideas of this paper. Unless
otherwise stated the passages shown modify the corresponding passages in the
standard. Section 4.14.10 and 8.20 are entirely new.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 119

4.14.10 Temporal Tables
A table in which the last component of the primary key is of scalar type with a
natural ordering, such as a date or timestamp, is called a semitemporal base
table. The last component TK of the primary key PK is said to be the default
temporal column of T.
 A semitemporal table is a table that is either a semitemporal base table or the
result of FOLD or INTERLEAVE. FOLD removes “unnecessary” rows in T,
which differ from existing rows only in CT, while INTERLEAVE adds such
unnecessary rows.
 A temporal table is a semitemporal table T without unnecessary rows, i.e.
such that T = T FOLD. In a temporal table T, the derived columns NEXT and
LAST are defined. As with ordinary columns, NEXT and LAST may be prefixed
by correlation or table names to indicate their table.
 The TEMPORAL JOIN operation is available for performing a sort of natural
join on two temporal tables whose default temporal columns have matching
types, which are combined in the temporal join operation to provide a default
temporal column in the result. For the purposes of this rule, date-time types shall
not match if their specified or implied <interval qualifier>s do not match. The
temporal join has a natural primary key consisting of the union of the non-
temporal columns of the primary keys of the two temporal tables, together with
the new temporal column.
 The temporal predicate CURRENT(TK) is equivalent to TK=T.LAST, and
TK AT V is equivalent to (TK<=V and TK=T.LAST or T.NEXT>V).

5.2 <token> and <separator>

2.2.3 Format
<non-reserved word> ::= … omit | LAST

<reserved word> ::= ..
| LAST | NEXT | FOLD | INTERLEAVE | TEMPORAL

6.1 <data type>

2.2.4 Format
<datetime type> ::=
 DATE [<interval qualifier>]
| TIME [<interval qualifier>]

[<left paren> <time precision> <right paren>]
[<with or without time zone>]

| TIMESTAMP [<interval qualifier>]
[<left paren> <timestamp precision> <right

paren>]
[<with or without time zone>]

2.2.5 Syntax rules
Change rule 32) to If DATE is specified but an <interval qualifier> is not
specified, the implicit interval qualifier shall be YEAR TO DAY. If TIME is

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

120 Data Mining VIII: Data, Text and Web Mining and their Business Applications

specified but an <interval qualifier> is not specified, the implicit interval
qualifier shall be HOUR TO SECOND. If TIMESTAMP is specified but an
<interval qualifier> is not specified, the implicit interval qualifier shall be YEAR
TO SECOND.

2.2.6 General rules
Change rule 4) to For a <datetime type> the <primary datetime field>s contained
shall be specified by the specified or implicit <interval qualifier>.

6.7 <column reference>

2.2.7 Format
<column reference> ::= ...
| <basic identifier chain> <period >

<derived temporal column>
…
<derived temporal column > ::=

 NEXT
| LAST

2.2.8 Syntax rules
Add
9) If NEXT or LAST is specified, then the <column reference shall be contained
in a <query specification> QS whose <table expression> is a temporal table TR,
BIC shall identify a temporal table T. If the <column reference> is contained in a
<query specification> QS whose from clause contains only one table T, then BIC
can be omitted, and the identification of T is implicit.

2.2.9 General rules
Add
2) If NEXT or LAST is specified,

a) Let the columns of TR be (CL1,…,CLn), reordering them if necessary so that
the primary key of TR is (CL1,..,CLk). Then CR=CLk .Let CL=(CL1,..,CLk-1).

b) Let LAST be the window function

MAX(CR) OVER (PARTITION BY CL)

c) Let NEXT be the window function

MAX(CR) OVER (PARTITION BY CL ORDER BY CR ROWS
BETWEEN 1 FOLLOWING AND 1 FOLLOWING)

NOTE: (a) The use of MAX here is a no-operation since there is at most
one row in the window frame. It is required syntactically in this
expression.

(b) NEXT and LAST are not derived columns in the sense used
elsewhere in the standard, since they are computed in the table they
relate to, ignoring any WHERE clauses etc in the query specification in
which they occur.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 121

7.6 <table reference>

2.2.10 Format
<table primary> ::= …
| <table primary> FOLD
| <table primary> INTERLEAVE

WITH <query primary>

2.2.11 Syntax rules
Add

26) If FOLD or INTERLEAVE is specified, let PTR be the <table primary>
specified as the argument to the FOLD or INTERLEAVE operation, and let TR
be the <table primary> specified by the FOLD or INTERLEAVE operation.

a) PTR shall be a semitemporal table. Let CT be its default temporal column. Let
DT be the data type of CT.

b) If INTERLEAVE is specified, let QP be the <query primary>. The result TT
of QP shall be a table with a single column TC of the type DT.

c) If FOLD or INTERLEAVE is let CN be the name of CT.

2.2.12 General rules
Add

6) If FOLD is specified, let the semitemporal table PTR have columns S1,…,Sn
such that the primary key CL is S1,..,Sk, with Sk=CT. Let SL be the list
SL1,..,SLn-1.

Then let PTR be ordered by CL. Let NCL=S1,..,Sk-1, the non-temporal
components of CL. Partition PTR by NCL. Each window TP in the partition has
identical values of NCL, and is ordered by distinct values of CT. Let TP = {TPij :
i=1,..,m; j=1,..,n } be such a window, and let N = { i : TPij = TPi-1 j for all j such
that k<j<=n }.

Define TS = { TPij : 1<=i<=m and i ∉ N; j=1,..,m } .

Then the result TR is the union of all such TS. Its columns will be the columns
of PTR with CT renamed as CN. It is a temporal table with the primary key
consisting of NCL together with CN.

7) If INTERLEAVE is specified, let the semitemporal table PTR have columns
S1,…,Sn such that Sn=CT . Let SL be the list SL1,..,SLn-1. Let TT be the result of
QP and let TC be its single column. Then

TR = SELECT SL,CT FROM PTR
UNION DISTINCT
SELECT SL,TC AS CN FROM PTR TN, TT WHERE TN.CT AT TC

The result is a semitemporal table with the same primary key as PTR.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

122 Data Mining VIII: Data, Text and Web Mining and their Business Applications

7.7 <joined table>

2.2.13 Format
<joined table> ::= ...
 | <temporal join>

<temporal join> ::=
<table reference> TEMPORAL [[AS] <identifier>] JOIN
<table factor>

2.2.14 Syntax rules
In the opening sentence of rules 6 and 7 replace NATURAL by NATURAL or
TEMPORAL.

Add

13) If TEMPORAL is specified, TR1 and TR2 shall be temporal tables with
primary keys whose non-temporal columns are NK1 and NK2, and default
temporal columns CT1 and CT2 respectively. Let NK be NK1 ∪ NK2. If the
<identifier> is specified let it be CN, let CN be the name of CT1. Let TRL be the
column list of TR2 with the name of CT2 replaced by CN.

Then the <temporal join> shall be equivalent to
(TR1 INTERLEAVE WITH (SELECT CT2 AS CN FROM TR2))
NATURAL JOIN
(TR2 TRL INTERLEAVE WITH (SELECT CT1 FROM TR1))
FOLD

The primary key of the result shall be NK together with CN.

8.1 <predicate>

2.2.15 Format
<predicate> ::= …
| <temporal predicate>

2.2.16 General rules
Add at the end, or <temporal predicate>.

8.20 <temporal predicate>

2.2.17 Function
Specify a temporal condition that can be evaluated to give a boolean value.

2.2.18 Format
<temporal predicate> :: = CURRENT <column reference
list>
| <column reference> AT <value expression>

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 123

2.2.19 Syntax rules
1) The <column reference>s specified in the AT predicate, or in the <column
reference list> of CURRENT, shall be default temporal columns in their
respective tables.

2.2.20 General rules
1) Let CLi be the default temporal column of tables Ti for each i. Then
CURRENT(CL1,..,CLn) shall be equivalent to CL1=T1.LAST(CL1) AND …
CLn=Tn.LAST(CLn).

2) Let CT be the default temporal column of table T. Then CT AT V shall be
equivalent to V >= CT AND (CT=T.LAST OR V<T.NEXT).

10.1 <interval qualifier>

2.2.21 Function
Change to Specify the precision of a date-time or interval data type.

2.2.22 Syntax rules
Change 2) to If TO is specified, then <start field> shall be more significant than
<end field>.

2.2.23 Implementation considerations
Although the functions and views proposed in this paper are not very simple to
write in SQL, they are efficient to implement in a DBMS.
 As noted above the “Table 3” approach to modelling temporal data results in
a change to the primary key of the base table, in which a date or timestamp
column is added as a final element of the primary key. The DBMS therefore will
have available an index which places the values in order; and the partitioning
mentioned in this paper will frequently use the previous primary key. As a result,
the constructs NEXT and LAST can be made very efficient. This enables
CURRENT, AT, FOLD, INTERLEAVE and TEMPORAL JOIN can be made
very efficient with very little effort on the part of the DBMS implementer.
 With the “Table 3” design, the current values of temporal data can be
accessed using views. With the implementation approach discussed in the last
paragraph it can be seen that views of the kind described here can be quite
efficient.
 Above all, the maximal amount of restructuring for temporal data that should
be contemplated is the use of “Figure 3” design for some temporal data. This
contrasts sharply with the amount of underlying change required to implement
either Date’s or Snodgrass’s general machinery, and the difficulty of the
concepts involved.

Acknowledgements

It is a pleasure to acknowledge the value of discussions with Thomas Connolly,
Junkang Feng and Xi Wang in developing these ideas.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

124 Data Mining VIII: Data, Text and Web Mining and their Business Applications

References

[1] Date, C. J. Seminar at the e-Science institute, Edinburgh, November 2005.
http://www.nesc.ac.uk/esi/events/601/

[2] Zimanyi, E: Temporal Aggregates and Temporal Universal Quantification
in Standard SQL, SIGMOD Record 35 (2), June 2006
http://www.sigmod.org/sigmod/record/issues/0606/index.html

[3] Crowe, M.K. The Pyrrho Database Management System
http://www.pyrrhodb.com, 2006

[4] SQL 2003: ISO/IEC 9075-2:2003 Information Technology – Database
Languages – SQL – Part 2: Foundation (SQL/Foundation)

[5] Snodgrass, R: Developing Time-Oriented Applications in SQL, Morgan
Kaufmann, 2000.

[6] Date, C. J., Darwen, H., Lorentzos, M: Temporal Data and the Relational
Data Model, Morgan Kaufmann, San Francisco, ISBN 1-55860-855-9,
2003

[7] Gabbay, D., McBrien, P.: Temporal Logic & Historical Databases,
Proceedings of the 17th International Conference on Very Large
Databases, Bercelona, p. 423-430, Sept 1991, http://www.vldb.org/conf/
1991/P423.PDF

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 125

