
Performance assessment of parallel techniques

T. Grytsenko & A. Peratta
Wessex Institute of Technology, UK

Abstract

The goal of this work is to evaluate and compare the computational performance
of the most common parallel libraries such as Message Passing Interface (MPI),
High Performance Fortran (HPF), OpenMP and DVM for further
implementations. Evaluation is based on NAS Parallel benchmark suite (NPB)
which includes simulated applications BT, SP, LU and kernel benchmarks FT,
CG and MG. A brief introduction of the four parallel techniques under study:
MPI, HPF, OpenMP and DVM, as well as their models is provided together with
benchmarks used and the test results. Finally, corresponding recommendations
are given for the different approaches depending on the number of processors.
Keywords: MPI, HPL, DVM, OpenMP, parallel programming, performance,
parallel calculations.

1 Introduction

This section provides a brief introduction of the four parallel techniques under
study: MPI, HPF, OpenMP and DVM, as well as their models.

1.1 The Message-Passing Information programming model (MPI)

Programming models are generally categorised according to the way in which
how memory is used. In the shared memory model each process accesses a
shared address space, while in the message passing model an application runs as
a collection of autonomous processes, each with its own local memory. In the
message passing model processes communicate with other processes by sending
and receiving messages (see Figure 1). When data is passed in a message, the
sending and receiving processes must work to transfer the data from the local
memory of one to the local memory of the other.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 83

doi:10.2495/DATA070091

Figure 1: The message-passing programming paradigm.

 Message passing is used widely on parallel computers with distributed
memory, and on clusters of servers. The advantages of using message passing
are [9, 10]: i- Portability; ii- Universality, i.e. the model makes minimal
assumptions about underlying parallel hardware; and iii- Simplicity, in the sense
that the model supports explicit control of memory references for easier
debugging.
 The primary goals of MPI are efficient communication and portability.
Although several message-passing libraries exist on different systems, MPI is
popular due to: i- support for full asynchronous communication, i.e. process
communication can overlap process computation; ii- group membership, that is,
processes may be grouped based on context; iii- Synchronization variables which
protect process messaging. When sending and receiving messages,
synchronisation is enforced by source and destination information, message
labelling, and context information; iv- Portability, in the sense that all MPI
implementations are based on a published standard which specifies the semantics
for usage. An MPI program consists of a set of processes and a logical
communication medium connecting those processes. An MPI process cannot
directly access memory in another MPI process. Inter-process communication
requires calling MPI routines in both processes. MPI defines a library of routines
through which MPI processes communicate. The MPI library routines provide a
set of functions that support: point-to-point communications, collective
operations, process groups and communication contexts, Process topologies, and
Data type manipulation. MPI includes more than 300 different procedures to
provide necessary functionality and provides interfaces for C/C++ and Fortran
languages.

1.2 HPF

In the data parallel model of HPF, calculations are performed concurrently over
data distributed across processors. Each processor operates on the segment of
data it owns. In many cases HPF compiler can detect concurrent calculations
with distributed data. HPF advises a two-level strategy for data distribution.
First, arrays should be co-aligned with the ALIGN directive. Then each group of

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

84 Data Mining VIII: Data, Text and Web Mining and their Business Applications

co-aligned arrays should be distributed onto abstract processors with the
DISTRIBUTE directive. There are several ways to express parallelism in
HPF:F90 style of array expressions, FORALL and WHERE constructs, the
INDEPENDENT directive and HPF librarybintrinsics [5]. In array expressions,
operations are performed concurrently on segments of data owned by a
processor. The compiler takes care of communicating data between processors if
necessary. The INDEPENDENT directive asserts that there are no dependences
between different iterations of a loop and the iterations can be performed
concurrently. In particular it asserts that Bernstein’s conditions are satisfied: sets
of read and written memory locations on different loop iterations don’t overlap
and no memory location is written twice on different loop iterations [6]. All loop
variables which do not satisfy the condition should be declared as NEW and are
replicated by the compiler in order for the loop to be executed in parallel. The
concurrency provided by HPF does not come for free. The compiler introduces
overhead related to processing of distributed arrays. There are several types of
overhead: (1) creating communication calls, (2) implementing independent
loops, and (3) creating temporaries, and accessing distributed arrays. The
communication overhead is associated with requests of elements residing on
different processors when they are necessary for evaluation of an expression with
distributed arrays or executing an iteration of an independent loop. Some
communications can be determined at compile time while others can be
determined only at run time causing extra copying and scheduling of
communications. As an extreme case, the calculations can be scalarised resulting
in a significant slowdown. HPF standard was developed in 1993 as an extension
of Fortran 90. Later on such extensions were been proposed for C/C++.

1.3 OpenMP

OpenMP [7] is designed to support portable implementation of parallel programs
for shared memory multiprocessor architectures. OpenMP is a set of compiler
directives and callable runtime library routines that extend Fortran, C and C++ to
express shared memory parallelism. It provides an incremental path for parallel
conversion of any existing software, as well as targeting at scalability and
performance for a complete rewrite or entirely new software. A fork-join
execution model is employed in OpenMP. A program written with OpenMP
begins execution as a single process, called the master thread. The master thread
executes sequentially until the first parallel construct is encountered (such as a
“PARALLEL” and “END PARALLEL” pair). The master thread, then, creates a
team of threads, including itself as part of the team. The statements enclosed in
the parallel construct are executed in parallel by each thread in the team until a
worksharing construct is encountered. The “PARALLEL DO” or “DO” directive
is such a worksharing construct which distributes the workload of a DO loop
among the members of the current team. An implied synchronisation occurs at
the end of the DO loop unless an “END DO NOWAIT” is specified. Data
sharing of variables is specified at the start of parallel or worksharing constructs
using the SHARED and PRIVATE clauses. In addition, reduction operations
(such as summation) can be specified by the “REDUCTION” clause. Upon

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 85

completion of the parallel construct, the threads in the team synchronize and only
the master thread continues execution. OpenMP introduces a powerful concept
of orphan directives that greatly simplify the task of implementing coarse grain
parallel algorithms. Orphan directives are directives encountered outside the
lexical extent of the parallel region. The concept allows the user to specify
control or synchronization from anywhere inside the parallel region, not just
from the lexically contained region.

1.4 DVM

DVM is an extension of ANSI-C and Fortran languages with annotations named
DVM-directives. DVM-directives may be conditionally divided on three subsets:
data distribution directives, computation distribution directives, and remote data
specifications. DVM model of parallelism is based on specific form of data
parallelism called SPMD (Single Program, Multiple Data). In this model all the
processors concerned execute the same program, but each processor performs its
own subset of statements in accordance with the data distribution. In DVM
model at first a user defines multidimensional arrangement of virtual processors,
which sections data and computations will be mapped on. The section can be
varied from the whole processor arrangement up to a single processor. Then the
arrays to be distributed over processors (distributed data) are determined. These
arrays are specified by data mapping directives. The other variables (distributed
by default) are mapped by one copy per each processor (replicated data).
A value of replicated variable must be the same on all the processors concerned.
Single exception of this rule is variables in parallel loop. Data mapping defines a
set of local or own variables for each processor. A set of own variables
determine the rule of own computations: the processor assigns the values to its
own variables only. DVM model defines two levels of parallelism: data and task
parallelism. Data parallelism is implemented by distribution of tightly enclosed
loop iterations over the processors of the processor arrangement (or the
arrangement sections). The loop iteration is executed on one processor entirely.
The statements located outside of the parallel loop are executed according to the
rule of own computations. Task parallelism is implemented by the distribution of
data and computations over disjoined sections of processor arrangement. When
calculating the value of own variable, the processor may need in values of both
own and remote variables. All remote variables must be specified in remote data
access directives.

2 NAS Parallel Benchmarks

NAS Parallel Benchmarks (NPB’s) [4] were derived from Computational Fluid
Dynamics (CFD) codes. They were designed to compare the performance of
parallel computers and are widely recognized as a standard indicator of computer
performance. NPB consists of five kernels and three simulated CFD applications
derived from important classes of aerophysics applications. These five kernels
mimic the computational core of five numerical methods used by CFD

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

86 Data Mining VIII: Data, Text and Web Mining and their Business Applications

applications. The simulated CFD applications reproduce much of the data
movement and computation found in full CFD codes. The benchmarks are
specified only algorithmically and referred to as NPB. Details of the NPB suite
can be found in [4]. In this paper we study only six benchmarks (excluding IS
and EP):
 • BT is a simulated CFD application that uses an implicit algorithm to solve
3-dimensional (3-D) compressible equation rKu = (1) where u and r are 5x1
vectors defined at the points of a 3D rectangular grid and K is a 7 diagonal block
matrix of 5x5 blocks. The finite differences solution to the problem is based on
an Alternating Direction Implicit (ADI) approximate factorization that decouples
the x, y and z dimensions: zyx BTBTBTK ⋅⋅≅ , where BTx, BTy and BTz are
block tridiagonal matrices of 5x5 blocks if grid points are enumerated in an
appropriate direction. The resulting system is then solved by solving the block
tridiagonal systems in x-, y- and z-directions successively.
 • SP is a simulated CFD application that has a similar structure to BT. The
finite differences solution to the problem is based on a Beam-Warming
approximate factorization and Pulliam-Chaussee diagonalisation of the operator
of equation (1) and adds fourth-order artificial dissipation:

111 −−− ⋅⋅⋅⋅⋅⋅⋅⋅≅ zzzyyyxxx TPTTPTTPTK

where Tx, Ty and Tz are block diagonal matrices of 5x5 blocks, Px, Py and Pz are
scalar pentadiagonal matrices. The resulting system is solved by inverting the
block diagonal matrices zyyxx TTTTT ⋅⋅ −− 11 ,, and then solving the scalar
pentadiagonal systems.
 • LU is a simulated CFD application that uses symmetric successive over-
relaxation (SSOR) method to solve a seven-block-diagonal system resulting from
finite-difference discretisation of the Navier-Stokes equations in 3-D by splitting
it into block Lower and Upper triangular systems:

))()(2(1ZDIYDK −++−≅ ωωωω

where ω is a relaxation parameter, D is the main block diagonal of K, Y consists
of three sub block diagonals and Z consists of three super block diagonals. The
problem is solved by computing elements of the triangular matrices and solving
the lower and the upper triangular system.
 • FT contains the computational kernel of a 3-D fast Fourier Transform
(FFT)-based spectral method. FT performs three one-dimensional (1-D) FFT’s,
one for each dimension. The trans-formation can be formulated as a matrix
vector multiplication:

uFFF knm)(⊗⊗=ν

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 87

where u and v are 3D arrays of dimensions (m,n,k) represented as vectors of
dimensions mxnxk. BA ⊗ is a block matrix with blocks Baij and is called
tensor product of A and B. The algorithm is based on representation of the FFT
matrix as a product of three matrices performing several FFT in one direction.
Henceforth FT performs FFTs in x-, y- and z- directions successively. The core
FFT is implemented as a Swarztrauber’s vectorisation of Stockham autosorting
algorithm performing independent FFTs over sets of vectors.
 • MG performs iterations of V-cycle multigrid algorithm for solving a
discrete Poisson problem vu =∇ on a 3D grid with periodic boundary
conditions [4]. Each iteration consists of evaluation of the residual Auvr −= ,
and of the application of the correction: Mruu += , where M is the V-cycle
multigrid operator.
 • CG uses a Conjugate Gradient method to compute an approximation to the
smallest eigenvalue of a large, sparse, unstructured matrix. This kernel tests
unstructured grid computations and communications by using a matrix with
randomly generated locations of entries. A single iteration can be written as
follows:

prprr

qrrpzz
d

qpdApq

T

T

β
ρ
ρβρ

ρραα

ρα

+===

=−=+=

===

,,

,,,

,,,

0

0

The most time consuming operation is the sparse matrix vector multiplication
Apq = which is carried out in parallel.

3 Test results

The NPB implementation is based on message passing standard (MPI). So, it is
possible to compare original MPI implementation with the implementations of
NPB by means of HPF, OpenMP and DVM techniques. MPI, OpenMP and HPF
versions are tested in Origin 2000 hardware platform and DVM on RCC-cluster
[3]. Results shown in diagrams below are based on information derived from
sources [1–3,8]. Diagrams illustrate an execution time of MPI, OpenMP, HPF
and DVM versions of six tests from NPB set as well as speedup of different
versions for every test.

s

n
T

TSpeedup =

where Tn is execution time on multiprocessor computer (n=2,4,8,16,32) and Ts is
execution time on a single processor.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

88 Data Mining VIII: Data, Text and Web Mining and their Business Applications

BT test execution time

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40

Number of processors

Ti
m

e,
 se

c

MPI

OpenMP

HPF

SP test execution time

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40

Number of processors

Ti
m

e,
 se

c

LU test execution time

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40

Number of processors

Ti
m

e,
 se

c

FT test execution time

0

50

100

150

200

0 10 20 30 40

Number of processors

Ti
m

e,
 se

c

MG test execution time

0

20

40

60

80

100

120

140

160

0 10 20 30 40

Number of processors

Ti
m

e,
 se

c

CG test execution time

0

10

20

30

40

50

60

0 10 20 30 40

Number of processors

Ti
m

e,
 se

c

Figure 2: Test execution time of MPI-, OpenMP- and HPF-version on Origin
2000.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 89

SP test execution time

0

500

1000

1500

2000

2500

0 5 10 15 20

Number of processors

Ti
m

e,
 se

c

MPI

DVM

FT test execution time

0

20

40

60

80

100

120

140

160

0 5 10 15 20

Number of processors

Ti
m

e,
 se

c

BT test execution time

0

500

1000

1500

2000

2500

3000

0 5 10 15 20

Number of processors

Ti
m

e,
 se

c

LU test execution time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20

Number of processors

Ti
m

e,
 se

c

MG test execution time

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20

Number of processors

Ti
m

e,
 se

c

CG test execution time

0

5
10

15

20

25
30

35

40
45

50

0 5 10 15 20

Number of processors

Ti
m

e.
 se

c

Figure 3: Test execution time of MPI- and DVM-version on RCC-cluster.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

90 Data Mining VIII: Data, Text and Web Mining and their Business Applications

BT speedup

0

5

10

15

20

25

30

35

40

0 20 40

Number of processors

Sp
ee

du
p

MPI

OpenMP

HPF

DVM

SP speedup

0

5

10

15

20

25

30

35

0 10 20 30 40

Number of processors

Sp
ee

du
p

LU speedup

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40

Number of processors

Sp
ee

du
p

FT speedup

0

5

10

15

20

25

0 10 20 30 40

NUmber of processors

Sp
ee

du
p

MG speedup

0

5

10

15

20

25

30

0 10 20 30 40

Number of processors

Sp
ee

du
p

CG speedup

0

5

10

15

20

25

30

0 10 20 30 40

Number of processors

Sp
ee

du
p

Figure 4: Speedup of MPI-, OpenMP-, HPF- and DVM-version for BT, SP,
LU, FT, MG and CG.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 91

4 Conclusions

In most cases execution time of MPI-version is lower, in comparison to other
approaches. OpenMP-version is about 10% slower than MPI-version, whereas
DVM is 20% and HPF is 30%. This difference increases with the number of
processors. This is because of the efficient model of memory distribution in MPI
which employs cache memory in a more efficient way. Speedup of MPI-version
is also higher than speedup of other approaches. As a conclusion, if a given task
is distributed over more than 16 processors then MPI offers the best solution for
this suite of benchmarks. However, MPI is a low-level programming language in
terms of parallel programming. This is “assembler” for parallel programming
especially at data distribution stage and building of communication scheme
between processes. In some cases when the number is lower than 16 it is
advisable to use another technique such as OpenMP or DVM, which although
are not as fast as MPI, they are easier to implement. Comparison on NPB 2.3 test
cannot be comprehensive because these tests are developed on a very high level
by team of experts but it can give a general imagination about possible
performance of involved parallel techniques. Finally, in general parallel
programmes require a considerable amount of modifications in order to optimise
its computational performance. Hence, in parallel applications, the developer
should have special knowledge not only in his/her scientific area but also in the
specific parallel technique that leads to the optimum performance.

References

[1] Michael Frumkin, Haoqiang Jin and Jerry Yan (1998). Implementation of
NAS Parallel Benchmarks in High Performance Fortran. NAS Technical
Report NAS-98-009, NASA Ames Research Center.

[2] H. Jin, M. Frumkin and J. Yan (1998). The OpenMP Implementation of
NAS Parallel Benchmarks and Its Performance. NASA Ames Research
Center.

[3] V. Krukov. Development of Parallel Programmes for Clusters and
Networks (2002). Keldysh Institute of Applied Mathematics.

[4] D. Bailey, T. Harris, W. Sahpir, R. van der Wijngaart, A. Woo, M.
Yarrow (December 1995). The NAS Parallel Benchmarks 2.0. Report
NAS-95-020.

[5] C.H. Koelbel (November 1997). An Introduction to HPF 2.0. High
Performance Fortran - Practice and Experience. Supercomputing 97.

[6] C.H. Koelbel, D.B. Loverman, R. Shreiber, GL. Steele Jr., M.E. Zosel
(1994). The High Performance Fortran Handbook. MIT Press.

[7] OpenMP Fortran Application Program Interface, http://www.openmp.org
[8] DVM. Execution performance of NAS tests, http://www.keldysh.ru/dvm/
[9] Writing Message-Passing Parallel Programs with MPI. http://www.

epcc.ed.ac.uk/ computing/ training/ document_archive/ mpi-course/ mpi-
course.book_1.html

[10] HP MPI User's Guide. Fourth Edition http://www.docu.sd.id.ethz.ch/
comp/stardust/SW/mpi/title.html

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

92 Data Mining VIII: Data, Text and Web Mining and their Business Applications

