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Abstract 

Genetic Algorithms (GAs) are search methods based on principles of natural 
selection and genetics. GAs attempt to find optimal solutions to a given problem 
by manipulating a population of candidate solutions (individuals). In the real 
world, we always encounter the problems that need to be solved in a changing 
environment. This means that our algorithm needs to be dynamic or even 
adaptive to the changing environment. In this paper, we mainly deal with the 
adaptive GAs that have a new genetic operator called transformation instead of 
the traditional crossover. We use a dynamic problem generator to create a 
dynamically changing landscape and study the behavior of the       
transformation-based GAs in different parameter settings, such as transformation 
rate, mutation rate and segment replacement rate. 
Keywords:  Genetic Algorithm, transformation operator, dynamically changing 
environment. 

1 Introduction 

Genetic Algorithms (GAs) are mainly used to solve optimization problems, see 
e.g. [1, 3, 4, 7]. In fact, there are various optimization methods such as 
exhaustive search, analytical optimization, line optimization methods, and 
natural optimization methods; natural optimization methods include simulated 
annealing, ant colony optimization, and genetic algorithms. 
     In traditional GAs, the operator set is usually fixed but in the real world we 
always encounter problems that need to be solved in a changing environment. 
Such problems include target recognition (the sensor performance varies on 
environmental conditions); scheduling problems (available resources vary over 
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time); financial trading models (market conditions can change abruptly); 
investment portfolio evaluation (the assessment of investment risk change in 
time). These types of problems may experience simple dynamics where the 
fitness peaks representing the optimal problem solution drift slowly from one 
value to the next one, or complicated dynamics where the fitness peaks change 
more dramatically with the current peaks being destroyed and new remote peaks 
arising from valleys. To solve this kind of problems, our algorithm has to be 
dynamic or even adaptive to the changing environment. 
     In recent years there has been a significant research in upgrading the genetic 
algorithms to work more efficiently in dynamic environments [2, 5, 6, 8–10, 12]; 
most of this research could be grouped into one of these categories: 

1. Increasing diversity after change: The GA runs in a standard fashion 
but as soon as a change in the environment has been detected 
explicit actions are taken to increase diversity and thus to facilitate 
the shift to the new optimum.   

2. Maintaining diversity throughout the run: Convergence is avoided 
and it is hoped that a spread-out population can adapt to changes 
more easily.   

3. Memory based approaches: The GA exhibits a memory that is able 
to recall useful information from past generations that seems 
especially useful when the optimum repeatedly returns to previous 
locations.  

4. Multi-population Approaches: Multiple subpopulations are used, 
some to track known local optima, some to search for new ones.  

Most of the adaptive GAs are trying to improve the diversity of the population so 
that the change in the fitness landscape can be detected by some individuals, 
importing random immigrants and placing sentinels. 
     The paper is organized as follows. Section 2 introduces the mechanism of 
transformation-based genetic algorithms. Section 3 briefly surveys the dynamic 
problem generator that is used for testing the performance of TGA. In Section 4, 
the performance of TGA is compared with other GAs, and also the TGA 
performance in different parameter settings is tested. 

2 Transformation-based Genetic Algorithm 

Transformation [13, 14] is a genetic operator inspired by the biological issue 
that, when incorporated into the genetic algorithms, can promote diversity in the 
population; in nature this operator occurs in colonies of bacteria. Usually, 
transformation consists in the transfer of small pieces of cellular DNA between 
organisms. These pieces of DNA (called gene segments) [13] are extracted from 
the environment and added to recipient cells. 
     Transformation-based GA (TGA) starts with a randomly generated initial 
population of individuals and a randomly generated initial gene segment pool 
[13]. Gene segments are used for transforming selected individuals; they thus act 
as foreign DNA pieces in bacterial transformation. In each generation, we select 
individuals to be transformed and apply transformation by using the gene 

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 38,

66  Data Mining VIII: Data, Text and Web Mining and their Business Applications



segments in the gene segment pool; then mutation is carried out. After that, the 
gene segment pool is updated by the individuals from the old population to 
create part of the new segments, and the rest of the segments are generated at 
random. One can see that the crossover operator in the standard GA is replaced 
by the transformation operator in the TGA.  
     After selecting individuals, we use the transformation mechanism to produce 
new individuals. We randomly select a segment from the gene segment pool, and 
also randomly choose a point of transformation in the selected individual. The 
segment is incorporated in the genome of the individual (chromosome), 
replacing the genes after the transformation point. It should be noted that the 
chromosome is seen as a circle. Figures 1 and 2 illustrate this transformation 
mechanism.  
 

 

Figure 1: Transformation mechanism (the gene segment lies in the middle of 
the chromosome). 

 

Figure 2: Transformation mechanism (the gene segment lies in the two ends 
of the chromosome). 
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3 Dynamic problem generator 

Researchers working in the field of applying GAs in dynamic environments have 
developed various dynamic test functions; this paper introduces the dynamic 
problem generator that was developed by Morrison and De Jong [11]. 
     The process of generating a dynamic problem can be divided into two steps:  
(i) constructing the shape of the fitness landscape; (ii) changing the landscape 
according to the user specified settings. 
     The morphology of the fitness landscape is the “field of cones” of different 
heights and various slopes that are randomly scattered across the landscape [11]. 
The static function can be specified for any number of dimensions. In the           
2-dimensional case: 

22
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where N is the number of cones in the environment, (Xi, Yi) specifies the location 
of each cone,  Hi  is the height of each cone,  Ri  is the slope of each cone 
(tangent value of the base angle). 
     In this dynamic problem generator, the features of the fitness landscape 
change in the discrete step sizes. To control the generation of a variety of 
different step sizes the following function was used: 
 

Yi = A* Yi-1 * (1 - Yi-1 ) 
 
where A is a user-specified constant, Yi is the value at iteration i. 

4 Experiments 

First, we have performed a comparative study between TGA and other common 
GAs, including standard genetic algorithm (SGA) [11] and triggered 
hypermutation-based genetic algorithm (HGA) [5]. Second, we have tested the 
TGA performance in various parameter settings.  In this study, we use the offline 
performance as a measure for comparing the efficiency of different GAs. 
 
(1)   TGA, HGA, and SGA Performance in Dynamic Landscape 
As we have already stated, we use the dynamic test problem generator to create 
the dynamic landscapes. We have fixed the peak heights so that the best fitness 
value is the same throughout all the generations. We exploit the following 
dynamics:  moving the peak locations, and changing the peak slopes randomly. 
Consequently, we get a changing landscape.  
     We have tested the three algorithms TGA, HGA, and SGA in the environment 
where landscape changes every 20 generations. The test results are shown in Fig. 
3. For all three algorithms, population size = 50, highest fitness value = 1873.00; 
SGA parameters are: crossover rate = 0.7, mutation rate = 0.01; TGA parameters 
are as follows: transformation rate = 0.6, segment replacement rate = 0.5, 
mutation rate = 0.001; HGA parameters were set as: crossover rate = 0.5, 
mutation rate = 0.01, hypermutation rate = 0.2. 
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Figure 3: Highest fitness values of TGA, HGA, and SGA in a dynamic 
landscape. 

 

Figure 4: Offline performances of TGA, HGA, and SGA in dynamic 
landscape. 

     We also compare the offline performance of these three algorithms with the 
above parameter settings. We have repeated the test 20 times and calculated the 
average of the offline performances; see Fig. 4. 
     One can see according to the two figures that SGA behaves poorly in this 
dynamic landscape. The reason is that individuals tend to converge around the 
optimal peak before the landscape change, but after the landscape change, these 
individuals find themselves in lower fitness. In the next generations, SGA 
generates new individuals around a previous region which is now in a low fitness 
area. Consequently, SGA lacks population diversity (the extent to which 
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individuals spread evenly throughout the search space) which is vital in dynamic 
environments. The SGA genetic operators are crossover and mutation. The 
individuals created through crossover are most probably in the same region as 
their parents. The only mechanism that can increase the population diversity is 
mutation, but the SGA mutation rate is usually very small. Thus, SGA has a 
smaller chance of finding optimal peak in the dynamic environment. 
     One can also see that HGA exhibits almost identical performance as TGA, 
and far better than SGA. The reason is that HGA keeps track of the population 
fitness in every generation. If it finds some significant decline in population 
fitness, then the landscape has changed. In this case, HGA dramatically increases 
the mutation rate and consequently increases the population diversity. 
 
(2)  TGA performance in various parameter settings 
In this section, we discuss the TGA performance in various parameter settings: 
(a) transformation rate, (b) segment replacement rate, and (c) mutation rate. 

 
(a)  TGA performance in various transformation rates 

This test compares the offline performance of TGA with the landscape changes 
in every 50 generations. We repeat the tests 20 times and calculate the average of 
the offline performances; see Fig. 5.  TGA parameters are set as follows: 
segment replacement rate = 0.5, mutation rate = 0.001. 
     One can see that TGA with the transformation rate of 0.7 performs better. The 
reason is that when the transformation rate is small then only small portion of the 
population is transformed. Therefore, the number of newly generated individuals 
is not large enough to increase the population diversity. When the transformation 
rate increases to 0.7, the number of new individuals becomes larger and, 
consequently, the population diversity also increases. But the transformation rate 
cannot be too high. If it were too high, then some individuals with higher fitness 
value would also be transformed. This could cause the destruction of these 
individuals (chromosomes), thus the overall performance of the algorithm would 
decrease. 

 
(b)  TGA performance in various segment replacement rates 

The offline performance of TGA in various combinations of the segment 
replacement rates and the landscape change durations is tested. Again, the tests 
are repeated 20 times, and the average of the offline performances is calculated, 
see Tab. 1; the greatest values are in italic. Here population size = 50, number of 
generations = 100; TGA parameters are: transformation rate = 0.7, mutation rate 
= 0.001. 
     One can see that the segment replacement rate of 0.3 is good for all the 
dynamics. The reason is that only 30% of the segments are generated from the 
old population and the rest of them are generated randomly. This large number 
of randomly generated gene segments increases the population diversity. 
Consequently, the algorithm behaves well in the dynamic environments. If the 
segment replacement rate is too small, then almost all the gene segments are  
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generated randomly. In this case, it is possible that some segments with better 
genes may be replaced by randomly generated segments, thus decreasing the 
performance of TGA. 

 

 

Figure 5: Offline performance of TGA with various transformation rates 
(Trans) in a landscape that changes every 50 generations. 

Table 1:  Offline performance of TGA in various segments replacement rates 
and various landscape change durations (LCD). 

 LCD=10 LCD=20 LCD=50 LCD=100 
segment.repl.rate = 0.1 1507.41 1566.26 1631.99 1682.25 
segment.repl.rate = 0.2 1527.42 1583.00 1641.45 1700.45 
segment.repl.rate = 0.3 1549.31 1588.26 1683.25 1708.45 
segment.repl.rate = 0.5 1513.71 1570.31 1622.51 1710.73 
segment.repl.rate = 0.7 1524.96 1564.39 1626.33 1645.3 

 
(c)  TGA performance in various mutation rates 

Mutation is one of the most important genetic operators in traditional GAs. In 
this study, we have found that even the mutation can be replaced by the 
transformation in TGA.  The offline performance of TGA in various 
combinations of mutation rates and landscape change durations is compared, see 
Tab. 2; the greatest values are in italic. In this test, GA parameters are identical 
to the previous experiment; segment replacement rate = 0.3. 
     One can see that TGA behaves better if there is no mutation or the mutation 
rate is very small. When the mutation rate increases then TGA performance 
decreases. Changing the genes may result in the destruction of good 
chromosomes, thus decreasing the algorithm performance. 
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Table 2:  Offline performance of TGA in various mutation rates and various 
landscape change duration (LCD). 

 LCD=10 LCD=20 LCD=50 LCD=100 
mutation.rate = 0.0 1522.42 1576.56 1639.64 1689.47 
mutation.rate = 0.001 1530.45 1578.65 1637.46 1680.53 
mutation.rate = 0.005 1531.96 1580.83 1621.53 1650.25 
mutation.rate = 0.01 1526.42 1576.56 1624.94 1641.48 
mutation.rate = 0.05 1491.22 1528.63 1570.64 1603.43 
mutation.rate = 0.1 1485.25 1435.52 1490.28 1510.31 

5 Conclusion 

The genetic algorithm called transformation using new genetic operator (inspired 
by biology) is presented. It is an alternative operator to the crossover one. In the 
transformation-based genetic algorithm (TGA), an individual is generated from a 
single parent and a gene segment. This differs from other GAs that use the 
crossover operator. 
     We have mainly focused on the methodology and implementation of general-
purpose GAs rather than carrying out a huge set of experimentation. We have 
carried out some experiments and used the offline performance as a measure of 
algorithm efficiency.  Analysis of these experiments includes the following. 
• TGA with a higher transformation rate of 0.7 performs better. The reason is 
that higher transformation rate of 0.7 causes more new individuals to be 
generated; these new individuals replace the poor individuals in the old 
population, so it increases the overall performance of the algorithm. But the 
transformation rate cannot be too high. If it is too high, then some individuals 
with higher fitness value will also be transformed. 
• Smaller segment replacement rate exhibits better performance in all dynamics. 
If the segment replacement rate is small, then only a small part of the segments is 
generated from old population and the rest of them are generated randomly. This 
large number of randomly generated gene segments increases the population 
diversity. Consequently, the algorithm behaves well in the dynamic 
environments. 
• We have found that even the mutation operator can be replaced by the 
transformation in TGA. The mutation is used to increase the diversity of the 
population. In TGA, randomly generated gene segments can increase the 
diversity of the population, so the mutation can be replaced by the transformation 
operator if we set a proper segment replacement rate. 
     Future work may consist of (i) the study TGA with the variable length gene 
segments; (ii) the number of segments in the segment pool is also an important 
factor in TGA, therefore the relation between the population size and the 
segments pool size need to be studied, too. 
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