
Genetic Algorithms in a dynamically
changing environment

B. Dilimulati & I. Bruha
McMaster University, Department of Computing and Software, Hamilton,
Ontario, Canada

Abstract

Genetic Algorithms (GAs) are search methods based on principles of natural
selection and genetics. GAs attempt to find optimal solutions to a given problem
by manipulating a population of candidate solutions (individuals). In the real
world, we always encounter the problems that need to be solved in a changing
environment. This means that our algorithm needs to be dynamic or even
adaptive to the changing environment. In this paper, we mainly deal with the
adaptive GAs that have a new genetic operator called transformation instead of
the traditional crossover. We use a dynamic problem generator to create a
dynamically changing landscape and study the behavior of the
transformation-based GAs in different parameter settings, such as transformation
rate, mutation rate and segment replacement rate.
Keywords: Genetic Algorithm, transformation operator, dynamically changing
environment.

1 Introduction

Genetic Algorithms (GAs) are mainly used to solve optimization problems, see
e.g. [1, 3, 4, 7]. In fact, there are various optimization methods such as
exhaustive search, analytical optimization, line optimization methods, and
natural optimization methods; natural optimization methods include simulated
annealing, ant colony optimization, and genetic algorithms.
 In traditional GAs, the operator set is usually fixed but in the real world we
always encounter problems that need to be solved in a changing environment.
Such problems include target recognition (the sensor performance varies on
environmental conditions); scheduling problems (available resources vary over

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 65

doi:10.2495/DATA070071

time); financial trading models (market conditions can change abruptly);
investment portfolio evaluation (the assessment of investment risk change in
time). These types of problems may experience simple dynamics where the
fitness peaks representing the optimal problem solution drift slowly from one
value to the next one, or complicated dynamics where the fitness peaks change
more dramatically with the current peaks being destroyed and new remote peaks
arising from valleys. To solve this kind of problems, our algorithm has to be
dynamic or even adaptive to the changing environment.
 In recent years there has been a significant research in upgrading the genetic
algorithms to work more efficiently in dynamic environments [2, 5, 6, 8–10, 12];
most of this research could be grouped into one of these categories:

1. Increasing diversity after change: The GA runs in a standard fashion
but as soon as a change in the environment has been detected
explicit actions are taken to increase diversity and thus to facilitate
the shift to the new optimum.

2. Maintaining diversity throughout the run: Convergence is avoided
and it is hoped that a spread-out population can adapt to changes
more easily.

3. Memory based approaches: The GA exhibits a memory that is able
to recall useful information from past generations that seems
especially useful when the optimum repeatedly returns to previous
locations.

4. Multi-population Approaches: Multiple subpopulations are used,
some to track known local optima, some to search for new ones.

Most of the adaptive GAs are trying to improve the diversity of the population so
that the change in the fitness landscape can be detected by some individuals,
importing random immigrants and placing sentinels.
 The paper is organized as follows. Section 2 introduces the mechanism of
transformation-based genetic algorithms. Section 3 briefly surveys the dynamic
problem generator that is used for testing the performance of TGA. In Section 4,
the performance of TGA is compared with other GAs, and also the TGA
performance in different parameter settings is tested.

2 Transformation-based Genetic Algorithm

Transformation [13, 14] is a genetic operator inspired by the biological issue
that, when incorporated into the genetic algorithms, can promote diversity in the
population; in nature this operator occurs in colonies of bacteria. Usually,
transformation consists in the transfer of small pieces of cellular DNA between
organisms. These pieces of DNA (called gene segments) [13] are extracted from
the environment and added to recipient cells.
 Transformation-based GA (TGA) starts with a randomly generated initial
population of individuals and a randomly generated initial gene segment pool
[13]. Gene segments are used for transforming selected individuals; they thus act
as foreign DNA pieces in bacterial transformation. In each generation, we select
individuals to be transformed and apply transformation by using the gene

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

66 Data Mining VIII: Data, Text and Web Mining and their Business Applications

segments in the gene segment pool; then mutation is carried out. After that, the
gene segment pool is updated by the individuals from the old population to
create part of the new segments, and the rest of the segments are generated at
random. One can see that the crossover operator in the standard GA is replaced
by the transformation operator in the TGA.
 After selecting individuals, we use the transformation mechanism to produce
new individuals. We randomly select a segment from the gene segment pool, and
also randomly choose a point of transformation in the selected individual. The
segment is incorporated in the genome of the individual (chromosome),
replacing the genes after the transformation point. It should be noted that the
chromosome is seen as a circle. Figures 1 and 2 illustrate this transformation
mechanism.

Figure 1: Transformation mechanism (the gene segment lies in the middle of
the chromosome).

Figure 2: Transformation mechanism (the gene segment lies in the two ends
of the chromosome).

Transformation Point Copy genes from
selected segment

Selected individual Selected segment

Transformation Point

Selected individual Selected gene segment

Copy genes from
selected segment

Transformation
Point

Transformation
Point

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 67

3 Dynamic problem generator

Researchers working in the field of applying GAs in dynamic environments have
developed various dynamic test functions; this paper introduces the dynamic
problem generator that was developed by Morrison and De Jong [11].
 The process of generating a dynamic problem can be divided into two steps:
(i) constructing the shape of the fitness landscape; (ii) changing the landscape
according to the user specified settings.
 The morphology of the fitness landscape is the “field of cones” of different
heights and various slopes that are randomly scattered across the landscape [11].
The static function can be specified for any number of dimensions. In the
2-dimensional case:

22
,1)()(*max),(iiiiNi YYXXRHYXf −+−−= =

where N is the number of cones in the environment, (Xi, Yi) specifies the location
of each cone, Hi is the height of each cone, Ri is the slope of each cone
(tangent value of the base angle).
 In this dynamic problem generator, the features of the fitness landscape
change in the discrete step sizes. To control the generation of a variety of
different step sizes the following function was used:

Yi = A* Yi-1 * (1 - Yi-1)

where A is a user-specified constant, Yi is the value at iteration i.

4 Experiments

First, we have performed a comparative study between TGA and other common
GAs, including standard genetic algorithm (SGA) [11] and triggered
hypermutation-based genetic algorithm (HGA) [5]. Second, we have tested the
TGA performance in various parameter settings. In this study, we use the offline
performance as a measure for comparing the efficiency of different GAs.

(1) TGA, HGA, and SGA Performance in Dynamic Landscape
As we have already stated, we use the dynamic test problem generator to create
the dynamic landscapes. We have fixed the peak heights so that the best fitness
value is the same throughout all the generations. We exploit the following
dynamics: moving the peak locations, and changing the peak slopes randomly.
Consequently, we get a changing landscape.
 We have tested the three algorithms TGA, HGA, and SGA in the environment
where landscape changes every 20 generations. The test results are shown in Fig.
3. For all three algorithms, population size = 50, highest fitness value = 1873.00;
SGA parameters are: crossover rate = 0.7, mutation rate = 0.01; TGA parameters
are as follows: transformation rate = 0.6, segment replacement rate = 0.5,
mutation rate = 0.001; HGA parameters were set as: crossover rate = 0.5,
mutation rate = 0.01, hypermutation rate = 0.2.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

68 Data Mining VIII: Data, Text and Web Mining and their Business Applications

Figure 3: Highest fitness values of TGA, HGA, and SGA in a dynamic
landscape.

Figure 4: Offline performances of TGA, HGA, and SGA in dynamic
landscape.

 We also compare the offline performance of these three algorithms with the
above parameter settings. We have repeated the test 20 times and calculated the
average of the offline performances; see Fig. 4.
 One can see according to the two figures that SGA behaves poorly in this
dynamic landscape. The reason is that individuals tend to converge around the
optimal peak before the landscape change, but after the landscape change, these
individuals find themselves in lower fitness. In the next generations, SGA
generates new individuals around a previous region which is now in a low fitness
area. Consequently, SGA lacks population diversity (the extent to which

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 69

individuals spread evenly throughout the search space) which is vital in dynamic
environments. The SGA genetic operators are crossover and mutation. The
individuals created through crossover are most probably in the same region as
their parents. The only mechanism that can increase the population diversity is
mutation, but the SGA mutation rate is usually very small. Thus, SGA has a
smaller chance of finding optimal peak in the dynamic environment.
 One can also see that HGA exhibits almost identical performance as TGA,
and far better than SGA. The reason is that HGA keeps track of the population
fitness in every generation. If it finds some significant decline in population
fitness, then the landscape has changed. In this case, HGA dramatically increases
the mutation rate and consequently increases the population diversity.

(2) TGA performance in various parameter settings
In this section, we discuss the TGA performance in various parameter settings:
(a) transformation rate, (b) segment replacement rate, and (c) mutation rate.

(a) TGA performance in various transformation rates

This test compares the offline performance of TGA with the landscape changes
in every 50 generations. We repeat the tests 20 times and calculate the average of
the offline performances; see Fig. 5. TGA parameters are set as follows:
segment replacement rate = 0.5, mutation rate = 0.001.
 One can see that TGA with the transformation rate of 0.7 performs better. The
reason is that when the transformation rate is small then only small portion of the
population is transformed. Therefore, the number of newly generated individuals
is not large enough to increase the population diversity. When the transformation
rate increases to 0.7, the number of new individuals becomes larger and,
consequently, the population diversity also increases. But the transformation rate
cannot be too high. If it were too high, then some individuals with higher fitness
value would also be transformed. This could cause the destruction of these
individuals (chromosomes), thus the overall performance of the algorithm would
decrease.

(b) TGA performance in various segment replacement rates

The offline performance of TGA in various combinations of the segment
replacement rates and the landscape change durations is tested. Again, the tests
are repeated 20 times, and the average of the offline performances is calculated,
see Tab. 1; the greatest values are in italic. Here population size = 50, number of
generations = 100; TGA parameters are: transformation rate = 0.7, mutation rate
= 0.001.
 One can see that the segment replacement rate of 0.3 is good for all the
dynamics. The reason is that only 30% of the segments are generated from the
old population and the rest of them are generated randomly. This large number
of randomly generated gene segments increases the population diversity.
Consequently, the algorithm behaves well in the dynamic environments. If the
segment replacement rate is too small, then almost all the gene segments are

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

70 Data Mining VIII: Data, Text and Web Mining and their Business Applications

generated randomly. In this case, it is possible that some segments with better
genes may be replaced by randomly generated segments, thus decreasing the
performance of TGA.

Figure 5: Offline performance of TGA with various transformation rates
(Trans) in a landscape that changes every 50 generations.

Table 1: Offline performance of TGA in various segments replacement rates
and various landscape change durations (LCD).

 LCD=10 LCD=20 LCD=50 LCD=100
segment.repl.rate = 0.1 1507.41 1566.26 1631.99 1682.25
segment.repl.rate = 0.2 1527.42 1583.00 1641.45 1700.45
segment.repl.rate = 0.3 1549.31 1588.26 1683.25 1708.45
segment.repl.rate = 0.5 1513.71 1570.31 1622.51 1710.73
segment.repl.rate = 0.7 1524.96 1564.39 1626.33 1645.3

(c) TGA performance in various mutation rates

Mutation is one of the most important genetic operators in traditional GAs. In
this study, we have found that even the mutation can be replaced by the
transformation in TGA. The offline performance of TGA in various
combinations of mutation rates and landscape change durations is compared, see
Tab. 2; the greatest values are in italic. In this test, GA parameters are identical
to the previous experiment; segment replacement rate = 0.3.
 One can see that TGA behaves better if there is no mutation or the mutation
rate is very small. When the mutation rate increases then TGA performance
decreases. Changing the genes may result in the destruction of good
chromosomes, thus decreasing the algorithm performance.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 71

Table 2: Offline performance of TGA in various mutation rates and various
landscape change duration (LCD).

 LCD=10 LCD=20 LCD=50 LCD=100
mutation.rate = 0.0 1522.42 1576.56 1639.64 1689.47
mutation.rate = 0.001 1530.45 1578.65 1637.46 1680.53
mutation.rate = 0.005 1531.96 1580.83 1621.53 1650.25
mutation.rate = 0.01 1526.42 1576.56 1624.94 1641.48
mutation.rate = 0.05 1491.22 1528.63 1570.64 1603.43
mutation.rate = 0.1 1485.25 1435.52 1490.28 1510.31

5 Conclusion

The genetic algorithm called transformation using new genetic operator (inspired
by biology) is presented. It is an alternative operator to the crossover one. In the
transformation-based genetic algorithm (TGA), an individual is generated from a
single parent and a gene segment. This differs from other GAs that use the
crossover operator.
 We have mainly focused on the methodology and implementation of general-
purpose GAs rather than carrying out a huge set of experimentation. We have
carried out some experiments and used the offline performance as a measure of
algorithm efficiency. Analysis of these experiments includes the following.
• TGA with a higher transformation rate of 0.7 performs better. The reason is
that higher transformation rate of 0.7 causes more new individuals to be
generated; these new individuals replace the poor individuals in the old
population, so it increases the overall performance of the algorithm. But the
transformation rate cannot be too high. If it is too high, then some individuals
with higher fitness value will also be transformed.
• Smaller segment replacement rate exhibits better performance in all dynamics.
If the segment replacement rate is small, then only a small part of the segments is
generated from old population and the rest of them are generated randomly. This
large number of randomly generated gene segments increases the population
diversity. Consequently, the algorithm behaves well in the dynamic
environments.
• We have found that even the mutation operator can be replaced by the
transformation in TGA. The mutation is used to increase the diversity of the
population. In TGA, randomly generated gene segments can increase the
diversity of the population, so the mutation can be replaced by the transformation
operator if we set a proper segment replacement rate.
 Future work may consist of (i) the study TGA with the variable length gene
segments; (ii) the number of segments in the segment pool is also an important
factor in TGA, therefore the relation between the population size and the
segments pool size need to be studied, too.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

72 Data Mining VIII: Data, Text and Web Mining and their Business Applications

References

[1] Affenzeller, M. & Wagner, S., Offspring Selection: A New Self-Adaptive
Selection Scheme for Genetic Algorithms. Adaptive and Natural
Computing Algorithms, pp. 218-221, 2005.

[2] Branke J., Evolutionary Approaches to Dynamic Optimization Problems –
Updated Survey. GECCO workshop on Evolutionary Algorithms for
Dynamic Optimization Problems, pp. 27–30, 2001.

[3] Bruha, I. & Kralik, P., Embedding a Genetic Algorithm in Attribute-Based
Rule-Inducing Learning. Soft Computing (SOCO-99), Symposium ICSC,
Genova, Italy, pp.631-635, 1999.

[4] Bruha, I., Kralik, P. & Berka, P., Genetic Learner: Discretization and
Fuzzification of Numerical Attributes. Intelligent Data Analysis Journal, 4,
pp. 445-460, 2000.

[5] Cobb, H. G., An Investigation Into the Use of Hypermutation as an
Adaptive Operator in Genetic Algorithms Having Continuous, Time-
Dependent Nonstationary Environment. NRL Memorandum Report 6760,
1990.

[6] Cobb, H.G. & Grefenstette, J. J., Genetic Algorithms for Tracking
Changing Environments. Proceedings of the Fifth International
Conference on Genetic Algorithms, pp.523-530, 1993.

[7] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Publishing Company, 1989.

[8] Grefenstette, J. J., Genetic algorithms for changing environments. Parallel
Problem Solving from Nature, 2, ed. R. Manner and B. Manderick,
Elsevier Science, pp. 137-144, 1992.

[9] Grefenstette, J. J., Evolvability in dynamic fitness landscapes: A Genetic
Algorithm Approach. Proceedings of the Congress on Evolutionary
Computation, 3, IEEE Press, pp. 2031-2038, 1999.

[10] Lund, H.H., Adaptive Approaches Towards Better GA Performance in
Dynamic Fitness Landscapes. Technical Report DAIMI PB-487, Aarhus
University, 1994.

[11] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution
Programs, 3rd Edition, Springer Verlag, 1996.

[12] Morrison, R.W., Designing Evolutionary Algorithms for Dynamic
Environments, Springer Verlag, 2004.

[13] Simoes, A., & Costa, E., On Biologically Inspired Genetic Operators:
Transformation in the Standard Genetic Algorithm. Proceedings of the
Genetic and Evolutionary Computation Cenference, GECCO-2001, ed. W.
B. Langdon et al, Morgan Kaufmann, pp. 584-591, 2002.

[14] Simoes, A., & Costa, E., Parametric Study to Enhance Genetic
Algorithm’s Performance when Using Transformation. Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’02), ed. B.
Langdon et al, Morgan Kaufmann, 2002.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 73

