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Abstract 

Many computational algorithms in science and engineering give rise to large 
sparse linear systems of equations which need to be solved as efficiently as 
possible. As the size of the problems of interest increases, it becomes necessary 
to consider exploiting multiprocessors to solve these systems. This paper reports 
on the implementation of a parallel solver for sparse linear systems of equations 
and proposes simple formulas for predicting the speedup in terms of the size of 
the linear system and number of processors in the cluster. The iterative solvers 
considered in this paper are i – Conjugate Gradient Squared Method (CGS),        
ii – Generalised Minimal Residual Method (GMRES) and iii – the Transpose 
Free Quasi-Minimal Residual Method (TFQMR) from the Aztec library 
implemented with the MPI interface and Parallel Knoppix based cluster. 
Keywords:  parallel solver, iterative solver, sparse matrix, cluster, MPI, Aztec, 
Parallel Knoppix. 

1 Introduction 

Many computational algorithms in science and engineering give rise to large 
sparse linear systems of equations (LSES) which need to be solved as efficiently 
as possible. Most modern iterative methods for solving sparse LSES have as 
their key computational step the computation 
 

bAx =                                                      (1) 
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where A  is a sparse matrix, and x  and b  are input and output vectors, 
respectively. For large-scale computing, the calculation of (1) is time consuming 
when computed without paying particular attention to data structure and 
computer architecture. However, the elapsed computational time can be greatly 
reduced on a parallel computer by partitioning the original problem into blocks 
and then distributing them over the processors and performing the computation 
in parallel. This paper reports on architecture and implementation of parallel 
solver for sparse LSES based on Linux cluster and proposes the rules for optimal 
solution of LSES by means of parallel solver. 

  The next section gives an overview of the tools employed. In Section 3, 
architecture of developed software, configuration of cluster and its performance 
are described. Section 4 provides test results for parallel solver based on this 
cluster. Section 5 proposes the rules for optimal solution of LSES by means of 
developed parallel solver. Finally, Section 6 provides the conclusions and further 
research remarks. 

2 Used techniques and tools 

This section provides a brief introduction of the four techniques and tools used in 
developed software: Mpich, Aztec and Parallel Knoppix. 

2.1 Mpich library 

MPICH is an implementation of the Message Passing Interface (MPI) [4]. The 
goals of MPICH are to provide an MPI implementation for different platforms 
such as clusters and parallel processors. MPI was taken as a basis for parallel 
calculations because of its portability and high performance [3,4]. MPI is widely 
used in parallel scientific libraries including applied libraries for solving LSES. 
In this study MPICH v1.2.7 has been used. 

2.2 Aztec library 

Aztec [5] is a library that provides algorithms for the solution of large sparse 
linear systems arising in scientific and engineering applications. Aztec includes a 
number of Krylov iterative methods [6] such as conjugate gradient (CGS), 
generalized minimum residual (GMRES), biconjugate gradient (BiCG), 
stabilized biconjugate gradient (BiCGSTAB), transpose-free quasi-minimal 
residual (TFQMR) to solve LSES. It is portable to most parallel platforms since 
it uses MPI library to perform data communication across network or between 
processors in parallel computer. In this study Aztec v2.1 has been used. 

2.3 Operative system 

As an Operative system (OS) Parallel Knoppix [1,2] has been used. This is a 
cluster OS where nodes of the cluster can be configured almost automatically. 
The Parallel Knoppix is pre-configured to support from 2 to 254 nodes, but it can 
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easily be modified to allow for larger clusters. The last version of Parallel 
Knoppix gives a possibility to plug new computational nodes on-the-fly so that 
developed parallel solver becomes extremely scalable. In this study Parallel 
Knoppix 2.6.16.16 has been used.  

3 Software and hardware architecture 

3.1 Software architecture   

The parallel solver is represented as a 3-layer software (see Figure 1), where both 
OS and hardware are on the first layer, MPI interface is on the second one and 
the solver itself including Aztec library represents the last one. As a hardware 
platform any parallel computer with distributed memory (either cluster or 
parallel processor) can be used. The proposed software architecture provides 
good portability and scalability. The parallel solver, written in standard C++, 
uses only the STL so that it is a platform independent tool. The developed 
software provides interfaces for third-party utilities such as Metis [7] and 
Mondriaan [7,8]. 
 

 

Figure 1: Software tool architecture. 

3.2 Data distribution model and assembling the results 

Any parallel solver needs data to be partitioned over the processors or nodes in a 
computational environment. A partitioner should distribute the vectors x  and b  
and the nonzero entries of A  (1) so that each block contains almost the same 
number of entries and is as independent as possible from other blocks so that, 
when the blocks are distributed, communication between them is low. In this 
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study two different approaches have been used in order to distribute an initial 
matrix over the parallel processes in a system. The first one is based on linear 
partitioning and operates in the following way: 
 

Processor 0 is assigned the first 
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where N  is the total number of rows in matrix A  (eq. 1) and PRN  is the total 
number of processors in a system. In this data distribution model (see Figure 2) 
the main Process 0 broadcasts the number of rows in matrix A to all other 
existing processes, then each process sends an answer signal as a vector update[] 
which consists of indices of rows in the initial matrix A that have to be 
distributed to this certain process. Then, Process 0 sends the A matrix entries 
within the corresponding row limits to each process and clears those elements in 
its local memory so that at the end of distribution stage each process consists of 
only its own elements.  
 

 

Figure 2: Data distribution and results assembling model for linear 
partitioning. 

     If there is a necessity to use an external partitioner rather than the linear one it 
is possible to employ the second approach. In this approach (see Figure 3) 
Process 0 broadcasts the number of rows N  in matrix A  to all other existing 
processes exactly as in the previous approach. Then, Process 0 generates indices 
of rows to be updated by each process and sends this information to all existing 
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processes in the system. Afterwards, Process 0 sends the entries of corresponding 
rows to each process and clears those elements in its local memory so that at the 
end of distribution each process consists of only its own elements. Second 
approach is more centralised and has clearly expressed the main Process 0 which 
does not only send a content of rows but also generates the rows to be updated 
by every process. This technique is developed to make an interface to third-party 
partitioners such as Metis and Mondrian. The present paper does not analyse 
using of these partitioners.  
 

 

Figure 3: Data distribution and results assembling model for external 
partitioners. 

3.3 Hardware platform description 

In this study cluster that consists of two dual-processor computers has been 
employed. Table 1 shows the corresponding specifications. The computers are 
connected to each other by 100 Mbits/sec switch.  
     The computational performance achieved in this cluster is represented in 
Table 2. 

Table 1:  Configuration of the cluster. 

Component Model Quantity 
Motherboard Intel Pentium III FC-PGA Dual ZIF 

PGA370, Thunder LE S2510 
2 

Processor P III 800 Mhz 4 
RAM 4 DIMM x 512 Mb 2 
Switch 100 Mbit/sec Netgear Prosafe 16 port, model FS116 1 

4 Numerical results 

In order to test the developed parallel solving core a series of benchmarks has 
been prepared. All of the tests in a benchmark have the same sparsity ratio (2) 
but different number of rows/columns.  
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Table 2:  Cluster performance. 

Bandwidth, 
Mbit/sec 

Number of 
processors 

Performance, Gflops 

1 0.66 
2 1.07 

100 

4 1.5 
 

2N
N

SR NZ= ,                                                 (2) 

where N is the number of rows and columns of the LSES and NZN  is the 

number of non-zero elements of matrix A . 
     To estimate a quality of the results as well as performance of developed 
software and installed hardware platform, the CPU times in function of the 
number of rows/columns for single, 2 and 4 processors have been measured.  
     In this paper parallel versions of CGS, GMRES and TFQMR iterative 
methods have been studied. For this purpose a series of benchmarks has been 
prepared. The benchmarks have sparsity ratio about 0.001 and consist of five 
LSES with number of rows 648, 3000, 12288, 24000 and 41472. The test results 
are shown in Figure 4.  
     Figure 4 shows that (i) the solution time increases together with the number 
of processors for all solvers when system is small (N=648). This happens 
because the solver distributes initial data across the processes and distribution 
stage takes more time than solution stage. According to Figure 4, (ii) CGS-
method is the fastest one for LSES of any dimension. For all three solvers, (iii) 
communication time increases together with the dimensionality of LSES. 
Number of processors also affects communication time: (iv) the higher number 
of processors the higher communication time. Figure 5 summarises the solution 
speedup and gives a general view on how duration of different calculation stages 
is distributed with respect to each other. As a result, (v) GMRES is most scalable 
method but it is, however, the slowest one. (vi) TFQMR is the least scalable 
method. (vii) CGS is the fastest one and has medium scalability. (viii) 
Preparation and communication stages take about one third of total time to solve 
linear system by CGS method, about one sixth by GMRES and one fourth by 
TFQMR. 

5 Analysis of results 

The relationship between CPU time T , PRN  and N has been established by 
means of non-linear least squares method with the following trial functions: 
 

βα )(lnln NCBNAT PR ++= , 
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Figure 4: Execution and communication time of CGS-, GMRES- and 
TFQMR-solvers for LSES with 648, 12288 and 41472 rows 
depending on number of processors. 

where A , B , C , α  and β  were sought so that to minimise the error between 
trial function and experimental data. The results for CGS, GMRES and TFQMR 
solvers are given by equations (3), (4) and (5) respectively (see Figure 6). 

2
2 )(ln*065.073.016.3ln N

N
T

PR

++−=                       (3) 
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Figure 5: Relative life span of the three main stages and solution speedup for 
CGS-, GMRES- and TFQMR-method for LSES with 41472 rows 
on 4 processors. 

 

Figure 6: 3D-functions ),( NNT PR  for CGS-, GMRES- and TFQMR-
method. 
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N
NT PR

3.438ln*74.097.8ln −−=                          (4) 

NN
T

PR ln
1.137595.046.17ln 2 −+=                                (5) 

 
Using equations 3–5 it is possible to predict solution time for the clusters with 
more than 4 processors having the same architecture. The developed rules can be 
adopted for a control module that decides which one of the solvers has to be 
applied according to the number of processors available in the cluster and the 
number of rows/cols in the LSES. 
     The rules show that if the number of processors is less than 64, then CGS 
becomes the best option for the solution of LSES with low sparsity ratio (2).  
However, if the cluster consists of more than 64 processors, then GMRES shows 
the best solution time 41.6 seconds for LSES with N = 41472.  

6 Conclusions 

As a result of this work a small cluster for testing purposes has been set up and 
on its basis a parallel solver for linear systems of equations has been developed. 
Parallel versions of CGS, GMRES and TFQMR iterative methods for the 
solution of LSES have been compared to each other. As a conclusion, CGS is the 
fastest method but offers lowest scalability. TFQMR has medium scalability and 
performance. GMRES resulted optimum in terms of scalability and, according to 
equations (3-5), if the number of processors is more than 64 it shows the best 
performance. However, if the number of processors is less than 64, then CGS is 
the best option for the solution of LSES with low sparsity ratio (2).  
     One of the advantages of the developed set of tools is their scalability. The 
combination of tools proposed does not depend on any specific hardware 
platform and parallel solver can be used without any modifications on any 
number of computers up to 254 and any number of processors supported by 
current kernel of Knoppix OS. 
     In further work it would be useful to make a comparison and performance 
analysis of mentioned iterative solvers using network with the bandwidth higher 
than 100 Mbits/sec and LSES of higher sparsity ratios. Such a research would 
give an idea of how parallel solver performance depends on network bandwidth 
and how stable different parallel iterative methods are from the point of view of 
the LSES of different sparsity ratio. 
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