
Implementation and performance assessment
of a parallel solver for sparse linear systems of
equations and rules for optimal solution

T. Grytsenko & A. Peratta
Wessex Institute of Technology, UK

Abstract

Many computational algorithms in science and engineering give rise to large
sparse linear systems of equations which need to be solved as efficiently as
possible. As the size of the problems of interest increases, it becomes necessary
to consider exploiting multiprocessors to solve these systems. This paper reports
on the implementation of a parallel solver for sparse linear systems of equations
and proposes simple formulas for predicting the speedup in terms of the size of
the linear system and number of processors in the cluster. The iterative solvers
considered in this paper are i – Conjugate Gradient Squared Method (CGS),
ii – Generalised Minimal Residual Method (GMRES) and iii – the Transpose
Free Quasi-Minimal Residual Method (TFQMR) from the Aztec library
implemented with the MPI interface and Parallel Knoppix based cluster.
Keywords: parallel solver, iterative solver, sparse matrix, cluster, MPI, Aztec,
Parallel Knoppix.

1 Introduction

Many computational algorithms in science and engineering give rise to large
sparse linear systems of equations (LSES) which need to be solved as efficiently
as possible. Most modern iterative methods for solving sparse LSES have as
their key computational step the computation

bAx = (1)

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 55

doi:10.2495/DATA070061

where A is a sparse matrix, and x and b are input and output vectors,
respectively. For large-scale computing, the calculation of (1) is time consuming
when computed without paying particular attention to data structure and
computer architecture. However, the elapsed computational time can be greatly
reduced on a parallel computer by partitioning the original problem into blocks
and then distributing them over the processors and performing the computation
in parallel. This paper reports on architecture and implementation of parallel
solver for sparse LSES based on Linux cluster and proposes the rules for optimal
solution of LSES by means of parallel solver.

 The next section gives an overview of the tools employed. In Section 3,
architecture of developed software, configuration of cluster and its performance
are described. Section 4 provides test results for parallel solver based on this
cluster. Section 5 proposes the rules for optimal solution of LSES by means of
developed parallel solver. Finally, Section 6 provides the conclusions and further
research remarks.

2 Used techniques and tools

This section provides a brief introduction of the four techniques and tools used in
developed software: Mpich, Aztec and Parallel Knoppix.

2.1 Mpich library

MPICH is an implementation of the Message Passing Interface (MPI) [4]. The
goals of MPICH are to provide an MPI implementation for different platforms
such as clusters and parallel processors. MPI was taken as a basis for parallel
calculations because of its portability and high performance [3,4]. MPI is widely
used in parallel scientific libraries including applied libraries for solving LSES.
In this study MPICH v1.2.7 has been used.

2.2 Aztec library

Aztec [5] is a library that provides algorithms for the solution of large sparse
linear systems arising in scientific and engineering applications. Aztec includes a
number of Krylov iterative methods [6] such as conjugate gradient (CGS),
generalized minimum residual (GMRES), biconjugate gradient (BiCG),
stabilized biconjugate gradient (BiCGSTAB), transpose-free quasi-minimal
residual (TFQMR) to solve LSES. It is portable to most parallel platforms since
it uses MPI library to perform data communication across network or between
processors in parallel computer. In this study Aztec v2.1 has been used.

2.3 Operative system

As an Operative system (OS) Parallel Knoppix [1,2] has been used. This is a
cluster OS where nodes of the cluster can be configured almost automatically.
The Parallel Knoppix is pre-configured to support from 2 to 254 nodes, but it can

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

56 Data Mining VIII: Data, Text and Web Mining and their Business Applications

easily be modified to allow for larger clusters. The last version of Parallel
Knoppix gives a possibility to plug new computational nodes on-the-fly so that
developed parallel solver becomes extremely scalable. In this study Parallel
Knoppix 2.6.16.16 has been used.

3 Software and hardware architecture

3.1 Software architecture

The parallel solver is represented as a 3-layer software (see Figure 1), where both
OS and hardware are on the first layer, MPI interface is on the second one and
the solver itself including Aztec library represents the last one. As a hardware
platform any parallel computer with distributed memory (either cluster or
parallel processor) can be used. The proposed software architecture provides
good portability and scalability. The parallel solver, written in standard C++,
uses only the STL so that it is a platform independent tool. The developed
software provides interfaces for third-party utilities such as Metis [7] and
Mondriaan [7,8].

Figure 1: Software tool architecture.

3.2 Data distribution model and assembling the results

Any parallel solver needs data to be partitioned over the processors or nodes in a
computational environment. A partitioner should distribute the vectors x and b
and the nonzero entries of A (1) so that each block contains almost the same
number of entries and is as independent as possible from other blocks so that,
when the blocks are distributed, communication between them is low. In this

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 57

study two different approaches have been used in order to distribute an initial
matrix over the parallel processes in a system. The first one is based on linear
partitioning and operates in the following way:

Processor 0 is assigned the first 






 −+

PR

PR

N
NN 1

 rows

Processor 1 is assigned the next 






 −+

PR

PR

N
NN 2

 rows, and so on.

where N is the total number of rows in matrix A (eq. 1) and PRN is the total
number of processors in a system. In this data distribution model (see Figure 2)
the main Process 0 broadcasts the number of rows in matrix A to all other
existing processes, then each process sends an answer signal as a vector update[]
which consists of indices of rows in the initial matrix A that have to be
distributed to this certain process. Then, Process 0 sends the A matrix entries
within the corresponding row limits to each process and clears those elements in
its local memory so that at the end of distribution stage each process consists of
only its own elements.

Figure 2: Data distribution and results assembling model for linear
partitioning.

 If there is a necessity to use an external partitioner rather than the linear one it
is possible to employ the second approach. In this approach (see Figure 3)
Process 0 broadcasts the number of rows N in matrix A to all other existing
processes exactly as in the previous approach. Then, Process 0 generates indices
of rows to be updated by each process and sends this information to all existing

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

58 Data Mining VIII: Data, Text and Web Mining and their Business Applications

processes in the system. Afterwards, Process 0 sends the entries of corresponding
rows to each process and clears those elements in its local memory so that at the
end of distribution each process consists of only its own elements. Second
approach is more centralised and has clearly expressed the main Process 0 which
does not only send a content of rows but also generates the rows to be updated
by every process. This technique is developed to make an interface to third-party
partitioners such as Metis and Mondrian. The present paper does not analyse
using of these partitioners.

Figure 3: Data distribution and results assembling model for external
partitioners.

3.3 Hardware platform description

In this study cluster that consists of two dual-processor computers has been
employed. Table 1 shows the corresponding specifications. The computers are
connected to each other by 100 Mbits/sec switch.
 The computational performance achieved in this cluster is represented in
Table 2.

Table 1: Configuration of the cluster.

Component Model Quantity
Motherboard Intel Pentium III FC-PGA Dual ZIF

PGA370, Thunder LE S2510
2

Processor P III 800 Mhz 4
RAM 4 DIMM x 512 Mb 2
Switch 100 Mbit/sec Netgear Prosafe 16 port, model FS116 1

4 Numerical results

In order to test the developed parallel solving core a series of benchmarks has
been prepared. All of the tests in a benchmark have the same sparsity ratio (2)
but different number of rows/columns.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 59

Table 2: Cluster performance.

Bandwidth,
Mbit/sec

Number of
processors

Performance, Gflops

1 0.66
2 1.07

100

4 1.5

2N
N

SR NZ= , (2)

where N is the number of rows and columns of the LSES and NZN is the

number of non-zero elements of matrix A .
 To estimate a quality of the results as well as performance of developed
software and installed hardware platform, the CPU times in function of the
number of rows/columns for single, 2 and 4 processors have been measured.
 In this paper parallel versions of CGS, GMRES and TFQMR iterative
methods have been studied. For this purpose a series of benchmarks has been
prepared. The benchmarks have sparsity ratio about 0.001 and consist of five
LSES with number of rows 648, 3000, 12288, 24000 and 41472. The test results
are shown in Figure 4.
 Figure 4 shows that (i) the solution time increases together with the number
of processors for all solvers when system is small (N=648). This happens
because the solver distributes initial data across the processes and distribution
stage takes more time than solution stage. According to Figure 4, (ii) CGS-
method is the fastest one for LSES of any dimension. For all three solvers, (iii)
communication time increases together with the dimensionality of LSES.
Number of processors also affects communication time: (iv) the higher number
of processors the higher communication time. Figure 5 summarises the solution
speedup and gives a general view on how duration of different calculation stages
is distributed with respect to each other. As a result, (v) GMRES is most scalable
method but it is, however, the slowest one. (vi) TFQMR is the least scalable
method. (vii) CGS is the fastest one and has medium scalability. (viii)
Preparation and communication stages take about one third of total time to solve
linear system by CGS method, about one sixth by GMRES and one fourth by
TFQMR.

5 Analysis of results

The relationship between CPU time T , PRN and N has been established by
means of non-linear least squares method with the following trial functions:

βα)(lnln NCBNAT PR ++= ,

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

60 Data Mining VIII: Data, Text and Web Mining and their Business Applications

Figure 4: Execution and communication time of CGS-, GMRES- and
TFQMR-solvers for LSES with 648, 12288 and 41472 rows
depending on number of processors.

where A , B , C , α and β were sought so that to minimise the error between
trial function and experimental data. The results for CGS, GMRES and TFQMR
solvers are given by equations (3), (4) and (5) respectively (see Figure 6).

2
2)(ln*065.073.016.3ln N

N
T

PR

++−= (3)

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 61

CGS

Solving

Communication

Preparation

GMRES

Solving

Communication

Preparation

TFQMR

Solving

Communication

Preparation

Execution speedup

0

0.5

1

1.5

2

2.5

3

1P 2P 4P

CGS

GMRES

TFQMR

Figure 5: Relative life span of the three main stages and solution speedup for
CGS-, GMRES- and TFQMR-method for LSES with 41472 rows
on 4 processors.

Figure 6: 3D-functions),(NNT PR for CGS-, GMRES- and TFQMR-
method.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

62 Data Mining VIII: Data, Text and Web Mining and their Business Applications

N
NT PR

3.438ln*74.097.8ln −−= (4)

NN
T

PR ln
1.137595.046.17ln 2 −+= (5)

Using equations 3–5 it is possible to predict solution time for the clusters with
more than 4 processors having the same architecture. The developed rules can be
adopted for a control module that decides which one of the solvers has to be
applied according to the number of processors available in the cluster and the
number of rows/cols in the LSES.
 The rules show that if the number of processors is less than 64, then CGS
becomes the best option for the solution of LSES with low sparsity ratio (2).
However, if the cluster consists of more than 64 processors, then GMRES shows
the best solution time 41.6 seconds for LSES with N = 41472.

6 Conclusions

As a result of this work a small cluster for testing purposes has been set up and
on its basis a parallel solver for linear systems of equations has been developed.
Parallel versions of CGS, GMRES and TFQMR iterative methods for the
solution of LSES have been compared to each other. As a conclusion, CGS is the
fastest method but offers lowest scalability. TFQMR has medium scalability and
performance. GMRES resulted optimum in terms of scalability and, according to
equations (3-5), if the number of processors is more than 64 it shows the best
performance. However, if the number of processors is less than 64, then CGS is
the best option for the solution of LSES with low sparsity ratio (2).
 One of the advantages of the developed set of tools is their scalability. The
combination of tools proposed does not depend on any specific hardware
platform and parallel solver can be used without any modifications on any
number of computers up to 254 and any number of processors supported by
current kernel of Knoppix OS.
 In further work it would be useful to make a comparison and performance
analysis of mentioned iterative solvers using network with the bandwidth higher
than 100 Mbits/sec and LSES of higher sparsity ratios. Such a research would
give an idea of how parallel solver performance depends on network bandwidth
and how stable different parallel iterative methods are from the point of view of
the LSES of different sparsity ratio.

References

[1] Michael Creel (October 2004). ParallelKnoppix - Rapid Creation of a
Linux Cluster for MPI Parallel Processing Using Non-Dedicated
Computers. http://pareto.uab.es/wp/2004/62504.pdf

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 63

[2] Michael Creel (December 2004). ParallelKnoppix Tutorial.
http://pareto.uab.es/wp/2004/62504.pdf

[3] LAM team (2004). LAM/MPI Parallel Computing. http://www.lam-
mpi.org/

[4] William Gropp, Ewing Lusk, David Ashton (November 2005). MPICH2
User’s Guide. Version 1.0.3. Mathematics and Computer Science Division
Argonne National Laboratory. http://www-unix.mcs.anl.gov/mpi/mpich/
downloads/mpich2-doc-user.pdf

[5] R. S. Tuminaro, M. Heroux, S. A. Hutchinson and J. N. Shadid
(December 1999). Official Aztec User's Guide: Version 2.1.
http://www.cs.sandia.gov/CRF/pspapers/Aztec_ug_2.1.ps

[6] Yousef Saad (1996). Iterative Methods for Sparse Linear Systems. ISBN
0-534-94776-X

[7] S. Riyavong (2003). Experiments on Sparse Matrix Partitioning,
CERFACS Working Note WN/PA/03/32. http://www.cerfacs.fr/algor/
reports/2003/WN_PA_03_32.pdf

[8] Brendan Vastenhouw, Rob H. Bisseling (2005). A Two-Dimensional Data
Distribution Method for Parallel Sparse Matrix-Vector Multiplication.
Siam Review Vol. 47, No. 1, pp. 67–95, Society for Industrial and
Applied Mathematics

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

64 Data Mining VIII: Data, Text and Web Mining and their Business Applications

