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Abstract 

Undiscovered relationships in a data set may confound analyses, particularly 
those that assume data independence. Such problems occur when characters used 
for phylogenetic analyses are not independent of one another. Although a data 
mining technique known as rule induction from coverings has earlier been shown 
to be a promising approach for identifying such non-independence, its inherent 
computational complexity has limited its application for large phylogenetic data 
sets. Herein we present a parallelized implementation of the rule induction from 
coverings strategy which overcomes some of these limitations. We also discuss 
two heuristics that have been applied to the algorithm to further improve its 
efficiency. 
Keywords:  data mining, phylogenetics, parallelization. 

1 Introduction 

Some types of data analyses require and/or assume independence between items 
in the data set. If this assumption is violated, the results of the analysis may be 
incorrect. For example, such a problem can occur in phylogenetic analyses (i.e., 
the reconstruction of evolutionary interrelationships between biological species). 
A phylogenetic data set consists of rows representing different taxa and columns 
representing characters or attributes of the taxa. Phylogenetic inference methods 
such as maximum likelihood and parsimony are based on the assumption that 
each character in the data set serves as an independent hypothesis of evolution 
[1, 2]. If this assumption is not true, then correlated or non-independent 
characters can effectively be overweighted in analyses [3], and the resulting 
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phylogeny may not necessarily reflect the true evolutionary history. Thus, 
character non-independence should be identified before conducting phylogenetic 
analyses. 

Characters (i.e., attributes) can be non-independent in several ways—i.e., one 
attribute can depend upon another, attributes can co-depend on one another, or 
attributes can be correlated, wherein they do not depend on one another, but 
share a set of dependencies with other characteristics. In phylogenetics, 
characters that reflect homology share a set of dependencies that reflect the true 
evolutionary history of the group. This sort of dependency is referred to             
as phylogenetic autocorrelation. It is the basis of all modern methods                 
of phylogenetic analysis and results from synapomorphy. However, if in a 
phylogenetic data set a set of non-independent characters reflects homoplasy 
their presence may lead to an incorrect reconstruction of evolutionary history.  

In [4], the authors discussed the application of three data mining techniques 
for uncovering non-independence in phylogenetic data sets. Of these methods, 
rule induction from coverings was found to be the most promising. However, the 
computational complexity of that method made it prohibitive to run on even 
moderately sized data sets (i.e., more than about 20 attributes). 

Herein we present a parallelized implementation of the rule induction from 
coverings strategy as applied to the problem of identifying character non-
independence in phylogenetic data. We also discuss heuristics we have applied 
to the algorithm to further improve its efficiency. 

2 Related work 

Many systematists (e.g., [5, 6]) recognize that character dependence in 
phylogenetic data sets presents problems in reconstructions, but few quantitative 
attempts have been made to identify non-independence of phylogenetic 
characters. Of those methods available, all examine phylogenetic 
independence/autocorrelation of characters after phylogenetic analyses are 
conducted (e.g., [7–10]). A model phylogeny is required to conduct tests of 
independence. However, an assumption of independence is required to generate a 
model phylogeny. Clearly a better approach is to test for character non-
independence before conducting phylogenetic analyses. 

One attempt to develop a “pre-analysis” approach for measuring 
phylogenetic non-independence was presented in  [11]. In this method, suites of 
correlated characters are identified using character compatibility. An association 
matrix between characters in a data set is calculated, and eigenvector analyses 
are conducted on values in the matrix. Using this method, the authors were able 
to identify characters with similar patterns of compatibility, and identified suites 
of characters that were more correlated with one another than expected by 
chance. But the results were limited because from them, one could not identify 
dependency or co-dependency.   

In [4] the authors examined three data mining techniques to address the 
phylogenetic character non-independence problem: 1) Bayesian networks, 2) 
decision tree induction, and 3) rule induction from coverings. Bayesian networks 
were found to be of limited usefulness because of requirements on the ordering 
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of characters and the necessity of prior knowledge of relationships. Hence, the 
patterns of dependencies inherent in phylogenetic data sets were not immediately 
obvious through Bayesian analysis.   

The results of decision tree induction provided a more readily understandable 
pattern of dependencies in phylogenetic data sets.  The reported rules give clear 
statements of dependency relationships from one attribute to the next.  However, 
because there is the possibility of reporting false dependency relationships, or 
missing some dependency relationships altogether, the usefulness of this method 
was also limited. 

In contrast to decision tree induction, all rules produced by rule induction 
from coverings are “perfect,” and can be applied to new data with complete 
certainty.  Furthermore, the results from this method identify all dependency 
relationships, and the rules produced can be used to further examine the nature of 
those relationships. 

3 Rule induction from coverings 

RICO (Rule Induction from Coverings) is an implementation of an algorithm 
given in Ref. [13] for finding all possible coverings for a given data set. For this 
covering algorithm, if S is a set of attributes and R is a set of decision attributes, 
a covering P of R in S can be found if the following three conditions are 
satisfied:   

(i) P is a subset of S. 
(ii) R depends on P (i.e., P determines R). That is, if a pair of entities x and 

y cannot be distinguished by means of attributes from P, then x and y 
also cannot be distinguished by means of attributes from R. If this is 
true, then entities x and y are said to be indiscernible by P (and, hence, 
R), denoted x ~P y. An indiscernibility relation ~P is such a partition 
over all entities in the data set. 

(iii) P is minimal.  
Once a covering is found, it is a straightforward process to induce rules from 

it. Although any single covering may be a basis for computing a rule set that 
describes the entire data set, it can be even more useful to identify all possible 
coverings.  

Finding all coverings can be computationally expensive because, in theory, 
each possible subset of attributes must be tested as a potential covering (unless 
that subset is a superset of a covering that has already been identified). For a data 
set of k attributes, there are 2k different subsets. In a morphological data set, this 
may be 50–80 characters, but in a typical molecular data set this may be closer to 
2,000 characters. For phylogenetic data sets, some constraints can be applied to 
the covering algorithm to reduce the execution time. For example, the cardinality 
of the candidate subsets could be limited to a small number (e.g., ≤ 5) because it 
would likely be difficult to conceptualize larger combinations of characters to 
determine the state of the character of interest. Furthermore, it is reasonable to 
limit the number of rules reported to only those that cover a certain number of 
entities in the data set.  
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4 Modified RICO data structures and algorithms 

Although rule induction from coverings appeared to be a promising strategy for 
addressing the phylogenetic character non-independence problem, the 
computational complexity of the approach made it prohibitive to run on most 
phylogenetic data sets.  To overcome these scalability and efficiency issues, we 
developed a parallelized implementation called PRICO. 

4.1 Set representation 

The input data set is an m x n matrix M where the rows represent the different 
taxa and the columns represent the attributes. In a phylogenetic data set, typically 
there are approximately 20 rows and anywhere from 50 to 2,000 columns, Let A 
= {a1, a2, …, an} be the set of attributes. For a particular decision attribute y, we 
represent a set X ={x1, x2, …, xk}, where 1 ≤ k < n, that determines y as a tuple 
(X, y). Each xi (1 ≤ i ≤ k) and y must be distinct elements from A. A binary 
representation was used for a set of attributes, whereby the ith bit (1 ≤ i ≤ n) is 1 
if attribute ai from the set A is included; otherwise, the ith bit is 0.  

4.2 Finding all coverings 

To find all coverings the PRICO approach (which is outlined in Algorithm 1) 
makes repeated passes, generating candidate sets as tuples, and checking each 
such set to see if it is a legitimate covering for the decision attribute currently 
being considered.  The primary difference from the RICO implementation is the 
manner in which sets are generated and the way that sets are validated as 
legitimate coverings. 
 
Algorithm 1. Find all coverings for decision attribute y 
Input: m x n matrix M, and decision attribute y 

1. Generate a candidate tuple (X, y); 
2. Check whether X determines y; 
3. if X determines y then 
4.    if X is minimal then 
5.       add X to the set of coverings for y; 
6.   end-if; 
7. end-if; 
8. Repeat the above steps until all possible sets X for determining y have 

been checked. 
 
Algorithm 2 was utilized to test whether a set of attributes X determines an 

attribute y. Currently, we are only considering coverings of size at most 5 
because our end-users have stated that is difficult to conceptualize larger 
combinations of characters. Thus, the complexity of Algorithm 2 is simply O(m). 
Algorithm 2. Test whether X determines y 
Input: m x n matrix M, and tuple (X, y) 
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1. string s[ size_of(X) ]; 
2. hashtable h; 
3. for i = 1 to m do 
4.    for j = 1 to size_of(X) do 
5.        s[ j ] = value of xj in row i of M; 
6.   end-for; 
7.   int pos = h.find( s ); 
8.   if (pos ≠ h.end( )) then 
9.       if (h[pos].key( ) ≠ value of y in row i of M) 
10.          then return( false );  // X does not determine y 
11.       end-if; 
12.   else h.add( s ); 
13.   end-if; 
14. end-for; 
15. return( true ).  // X does determine y 

 
Step 4 of Algorithm 1 requires checking to see whether a set of attributes X 

that determines y is minimal. This procedure is outlined in Algorithm 3. The 
input is a set X (in binary representation) which has been found to determine an 
attribute y. It will be checked against the set C of all coverings (of size less than 
or equal to the size of X) for y that have been determined thus far to see whether 
X is minimal. If this algorithm returns true, then X will be added to the set C of 
coverings for y.  
 
Algorithm 3. Test whether the set of attributes X is minimal  
Input: set of attributes X that determines y, and the set C of coverings for y (that 
have been determined thus far) 

1. for each element ci in C do 
2.   if ( ( X & ci ) == ci ) then 
3.     return( false );  // X is a subset of another set in C, so X isn’t minimal 
4.   end-if; 
5. end-for; 
6. return( true ).  // X is minimal 

 
The complexity of Algorithm 3 is dependent upon the size of the set of 

coverings for a particular decision attribute. For a data set of n attributes where 
we are interested in coverings of size no greater than 5, the number of distinct 
sets that could possibly be tested as coverings for a particular decision attribute is 
proportional to the sum of the number of combinations of size r from a set of size 
n-1 where r = 1..5, which is O(n).  

4.3 Criteria for tuple generation and validation strategies 

Despite limiting the size of the coverings, we determined that any efficient 
strategy for generating sets to be subsequently checked as valid coverings should 
satisfy the following two criteria: 
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Criterion 1: Let G = (V, E) be a directed acyclic graph where, for each tuple (X, 
y) to be generated as a potential covering for decision attribute y, there is a 
vertex v = X in V. There exists an edge e = (v1, v2) in E for vertices v1 and v2 in 
V iff v1 is a subset of v2. Then a tuple is only generated (and subsequently 
checked to see if it is a valid covering) iff all of its ancestors in G have been 
generated. That is, do not generate a set of attributes X as a possible covering for 
a decision attribute y until all subsets of X have been generated. 
 
Criterion 2: Using the graph definition of Criterion 1, a tuple (X, y) that 
corresponds to a vertex v in V that has k children should be checked as a valid 
covering for y before any tuple corresponding to another vertex w in V that has 
fewer than k children. This will effectively check smaller sized sets before larger 
sized sets.  
 
These criteria ensure that all generated, and subsequently validated, coverings 
are indeed minimal (as per condition (iii) of the definition of a covering given in 
section 3).  

4.4 Tuple generation 

As mentioned earlier, for a tuple (X, y) that is to be checked to see if X is a valid 
covering for attribute y, we use a binary representation for X. One strategy for 
generating tuples to be checked is to do so in ascending order of the binary 
representation for each set. For example, suppose that A = {1, 2, 3, 4} and that 
the decision attribute is 3. Then this strategy would generate {1}, {2}, {1, 2}, 
{4}, {1, 4}, {2, 4}, and {1, 2, 4} to be checked as coverings for attribute 3 (in 
that order) since this corresponds to the binary sequence 0001, 0010, 0011, 1000, 
1001, 1010, 1011. However, using the graph representation defined in Criterion 
1, for two vertices v1 and v2 in the graph that represents possible coverings for 
some particular decision attribute, if there exists an edge v1 → v2, then it must be 
the case that bin(v1) < bin(v2), where bin is the binary representation of a set. But 
the vertex representing {4} (i.e., 1000) will have more children than the vertex 
representing {1, 2} (i.e., 0011), so, according to Criterion 2, {4} should have 
been checked before {1, 2}. That is not the order in which this strategy will 
generate and check those sets; thus, this strategy violates Criterion 2.  

An alternate strategy is to generate (and test) sets of attributes in canonical 
order. Again suppose that A = {1, 2, 3, 4} and the decision attribute is 3. Then 
this strategy would generate {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, and {1, 2, 4} to 
be checked as coverings (in that order), which corresponds to the binary 
sequence 0001, 0010, 1000, 0011, 1001, 1010, 1011. Using the graph 
representation defined in Criterion 1, if there exists an edge v1 → v2, then it must 
be the case that the number of 1’s in v2 is greater than the number of 1’s in v1. It 
will also be the case that v1 will have more children than v2. Therefore, since this 
strategy would generate and test v1 before v2, both Criterion 1 and Criterion 2 
would be satisfied. 
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By utilizing this strategy for generating tuples to be checked as coverings for 
a particular decision attribute, sequential execution of Algorithm 1 requires time 
proportional to O(n2) for each of n decision attributes.  

4.5 Parallelization of the algorithm 

The most important aspect of any parallel implementation is to minimize the 
communication among the processors. In the context of the covering problem, 
there are two basic strategies that could be employed for distributing the 
workload. One approach is to distribute the workload for finding the coverings 
for one particular decision attribute before proceeding with finding the coverings 
for a different decision attribute. However, any such approach that would satisfy 
Criterion 1 and Criterion 2 would require considerable inter-processor 
communication to utilize the graph properties defined for those criteria. 

A different approach for distributing the processing takes advantage of the 
fact that generation and testing of a tuple (X, y1) is completely independent of 
the processing for a tuple (X, y2) where y1 ≠ y2. Thus, each processor could be 
responsible for determining the coverings for a different decision attribute, a 
strategy that could easily satisfy both Criterion 1 and Criterion 2. This is the 
parallelization strategy that we utilized in PRICO. 

A parallel algorithm is considered to be optimal if the product of the number 
of steps and number of processors is of the same order as the best sequential 
algorithm. If executed sequentially, Algorithm 1 has complexity O(m * n) for 
determining the coverings for each of n decision attributes, for a total time of 
O(m * n2). Let p be the number of processors. If each processor utilizes 
Algorithm 1 (which is O(m * n) for one decision attribute) to find the coverings 
for n/p decision attributes, then the total time required will still be O(m * n2).  

4.6 Statistical analysis of the processing 

There are two primary stages of processing that a tuple goes through in 
Algorithm 1. Stage 1 occurs at steps 1 and 2 where a tuple (X, y) is generated and 
tested to see if the set of attributes X determines the attribute y. Stage 2 occurs at 
step 4 of Algorithm 1 where X is tested for minimality against the set of 
coverings for y found thus far. Another way to think of this is that the set of all 
tuples found at Stage 1 are effectively filtered at Stage 2 to produce the set of all 
coverings for a decision attribute y; that is, a set of attributes that determines y is 
filtered out in Stage 2 if it is not minimal, and, hence, not a covering for y.  

We ran PRICO on a hardware cluster that has 40 compute nodes, a single 
controlling node, and a single compilation node. The number of nodes available 
for parallel use is 32, each of which has two processors; thus, we utilized a total 
of 64 processors. Executing PRICO using this hardware configuration for a data 
set containing 20 rows and 73 attributes, we found that the average filter ratio for 
Stage 1 increases as the size of the sets of attributes being considered increases. 
This is to be expected since, as we increase the size the sets can be, we increase 
the number of candidate sets that will be considered at this stage.  Then the 
probability that those larger sets will be filtered out at Stage 1 (i.e., because the 
candidate set does not actually determine the decision attribute) increases. 
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In contrast, the average filter ratio for Stage 2 decreases as the size of the sets 
being tested for minimality increases. Recall that the strategy employed at Stage 
2 filters out sets according to Criterion 2, whereby smaller sized sets will be 
checked before larger sized sets. As the size of the set being considered 
increases, the probability that it will not be found to be minimal (and, thus, will 
be filtered out) increases.  

We also found that the average table utilization ratio for Stage 1 increases as 
the size of the sets being considered increases.  This is expected since, as the size 
of the set increases, the more lookups must be made in the data set to conclude 
whether the set of attributes actually determines the decision attribute. 

In contrast, the average table utilization ratio for Stage 2 decreases as the size 
of the sets being tested for minimality increases. This is again due to the fact that 
the Stage 2 strategy considers smaller sets before larger sets. Clearly, there will 
be more comparisons (i.e., “lookups”) for smaller sets against the set of 
coverings found thus far than there will be when Stage 2 examines larger sets, 
which will more quickly be eliminated as not being minimal. Similar results 
were found for the average filter ratios and table utilization ratios when PRICO 
was executed on a much larger molecular data set (81 rows, 3819 columns).  

5 Heuristics 

Two heuristics were implemented to further improve the performance of PRICO 
– specifically, to decrease the table utilization for Stage 1.  Both heuristics 
consider a reordering of rows in the data set prior to running PRICO, with the 
objective of more quickly rejecting a set of attributes as being a determining set 
for a particular decision attribute. This would reduce the number of lookups 
required, which, in turn, would reduce the table utilization factor. 

5.1 Different-on-top  

The objective of the first heuristic that we applied was to rearrange the rows in 
the data set such that the rows that differed the most from other rows 
(considering their respective attribute values) would be at the beginning, or the 
“top”, of the data matrix. These rows, which would be examined early, and 
would be more likely to produce smaller determining sets for a decision attribute, 
which, in turn, would result in fewer lookups at Stage 1 of Algorithm 1. To 
quantify the “difference” between two rows in the data set, we utilize a measure 
that computes the Hamming distance between row i and the other rows. Rows in 
the data set were then reordered in descending order of their distance value prior 
to running PRICO. 

5.2 Slightly-different-on-top 

The second heuristic that we applied was a slight variation of the “different-on-
top” reordering of rows. For a “slightly-different-on-top” reordering we 
compared each row i with each other row in the data set based on the absolute 
value of the Hamming distance between the two rows minus the size of the 
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determining set being considered. When PRICO was executed with this heuristic 
on a data set of 20 rows and 73 columns we found that the “slightly-different-on-
top” heuristic improved table utilization somewhat compared to the “different-
on-top” heuristic. The results were similar for a much larger molecular data set. 

6 Utility for phylogenetic analyses 

In typical practice, if characters in a phylogenetic analysis are thought to be non-
independent, all but one of the non-independent characters is deleted (or all are 
combined into a single “character suite”), or a weighting scheme is invoked that 
results in each character having less importance in the analysis.  The results of 
PRICO analyses should be used only as a way to identify possible character non-
dependence problems in phylogenetic data sets, and data should not be altered 
based only on PRICO results. PRICO, as with all data mining techniques, 
recognizes patterns in data, and it is possible that some of those patterns reflect 
homology (= true evolutionary history). Thus, data should not be removed until 
it has been determined by the systematist that the patterns of non-independence 
reflect homoplasy (= parallelism or convergence).  

The best possible scenario for utilizing PRICO is to: (1) run the PRICO 
analysis before any phylogenetic analysis and make note of suites of non-
independent characters; (2) run the phylogenetic analysis and plot the 
distribution of characters on the resulting tree; and (3) compare the PRICO 
results to the resulting phylogeny.  If there is a high degree of homoplasy (e.g., 
reversals, parallelisms) in the phylogenetic analysis, particularly at nodes where 
characters identified by PRICO show support, then it is likely that the 
dependency relationships identified by PRICO are not the result of homology, 
and removing or reweighing them is warranted. We plan to continue this 
research by examining several existing phylogenetic data sets (including those of 
experimentally-manipulated “known” phylogenies) to determine how prevalent 
homoplasious non-independence is, and what effect removal/reweighing the data 
will have on resulting phylogenetic reconstructions.  

7 Summary 

Because of the fairly large size of most phylogenetic data sets, applying data 
mining techniques to identify non-independence has been an intractable problem. 
However, our parallel implementation of rule induction from coverings has 
overcome at least some of these computational limitations. We next look forward 
to examining the implications of identifying non-independence for phylogenetic 
analyses, as well as possibly applying PRICO to other problem domains. 
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