
Implications of frequent subtree mining using
hybrid support definition

F. Hadzic1, H. Tan1, T. S. Dillon1 & E. Chang2
1Faculty of Information Technology, University of Technology Sydney,
Sydney, Australia
2Curtin University, Australia

Abstract

Frequent subtree mining has found many useful applications in areas where the
domain knowledge is presented in a tree structured form, such as bioinformatics,
web mining, scientific knowledge management etc. It involves the extraction of a
set of frequent subtrees from a tree structured database, with respect to the user
specified minimum support. To date, the commonly used support definitions are
occurrence match and transaction based support. There are some application
areas where using either of these support definitions would not provide the
desired information automatically, but instead further querying on the extracted
patterns needs to take place. This has motivated us to develop a hybrid support
definition that constrains the kind of patterns to be extracted and provides
additional information not provided by previous support definitions. This would
simplify some of the reasoning process which commonly takes place in certain
applications. In this paper we demonstrate the need for the hybrid support
definition by presenting some applications of tree mining where traditional
support definitions would fall short in providing the desired information. We
have extended our previous tree mining algorithms to mine frequent subtrees
using the hybrid support definition. Using real-world and synthetic data sets we
demonstrate the effectiveness of the method, and further implications for
reasoning with the extracted patterns.
Keywords: frequent subtree mining, hybrid support, knowledge merging.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 13

doi:10.2495/DATA070021

1 Introduction

In domains where the formally represented information is of tree structured
form, frequent subtree mining techniques can be used for efficient querying and
analysis of the domain knowledge. Tree structured information is increasingly
found in biomedical, web and scientific domains and hence tree mining is a
popular technique for many applications in these domains. The problem of
frequent subtree mining can be generally stated as: given a tree database Tdb and
minimum support threshold (σ), find all subtrees that occur at least σ times in
Tdb. Within this framework the two most commonly mined subtrees are induced
and embedded. An induced subtree preserves the parent-child relationships of
each node in the original tree. In addition to this, an embedded subtree allows a
parent in the subtree to be an ancestor in the original tree and hence ancestor-
descendant relationships are preserved over several levels. Depending on
whether the order of sibling nodes is to be considered important these subtrees
can be further split in ordered and unordered subtrees.

 There have been a number of algorithms developed for frequent subtree
mining and the scope of their application usually depends on the assumptions
made about the data structure that the algorithm can be applied to and to the
types of subtrees extracted. Some of the algorithms for extracting frequent
embedded subtrees from a database of rooted ordered labeled subtrees are
Treeminer [1], X3-Miner [2], MB3-Miner [2], whereas AMIOT [4] mines
induced ordered trees. UNI3 [5], PathJoin [6], uFreqt [7], and HybridTreeMiner
[8], mine induced, unordered subtrees, and SLEUTH [9] and U3 [10] extract
embedded unordered subtrees. FreeTreeMiner [11] extracts free trees in a graph
database. From the application perspective, some tree mining algorithms have
been successfully applied to biological domains [12–14].

 Our work in the area of frequent subtree mining is characterized by adopting
a Tree Model Guided (TMG) candidate generation as opposed to the join
approach which is commonly used. This non-redundant systematic enumeration
model ensures only valid candidates are generated which conform to the actual
tree structure of the data. Furthermore, our unique Embedding List
representation of the tree structure has allowed for an efficient implementation of
the TMG approach which has resulted in efficient algorithms for mining
embedded (MB3) [3] and induced (IMB3) [15] subtrees, from a databases of
labeled rooted ordered subtrees. MB3-R and IMB3-R algorithms (IMB3Jref) are
latest implementations that adopt a more space efficient global representation
and only store the right most path information for candidate subtrees. Motivated
by the fact that in many applications of frequent subtree mining the order among
siblings is not considered important we have recently shifted our focus to
unordered tree mining and have developed the UNI3 [5] and U3 [10] algorithms
for mining frequent unordered induced subtrees. At this stage we are applying
our developed algorithms to the ontology learning and matching problems. In
this process we notice that there are some changes required for the algorithms to
be efficiently applied for the ontology specific problems. The first change we
propose in this paper is an extension to the current support definitions.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

14 Data Mining VIII: Data, Text and Web Mining and their Business Applications

 Currently there are two support definitions used for determining the
frequency of a subtree, and both are suitable for certain applications. Transaction
based support (TS) [1] is used when only the existence of items within a
transaction is considered important, whereas occurrence match (OC) [1, 3]
support takes the repetition of items in a transaction into account and counts the
subtree occurrences in the database as a whole. In certain applications (an
example of which will be provided in the next section) the number of times a
subtree occurs within a transaction is of interest. Current support definitions fall
short on providing such information since they either just check for the existence
of a subtree in a transaction using TS or count the total number of occurrences
using OC. Therefore, we felt that an additional support definition was required
which will appropriately restrict the kind of subtree patterns extracted and
provide intra-transactional occurrence information for each subtree. In this paper
we provide this ‘hybrid’ support definition and demonstrate the implications of
using such support. We discuss some scenarios where this support definition is
useful for providing the necessary information that could not be obtained using
TS or OC support definitions. Our previously developed tree mining algorithms
were extended to mine frequent subtrees using the hybrid support definition, and
we describe our general TMG framework with the new support definition in
place.

 The rest of the paper is organized as follows. Section 2 provides a motivating
example and discusses some scenarios where the hybrid support definition would
be useful. The tree mining problem is briefly presented in Section 3. Section 4
provides an overview of our general TMG approach to tree mining with the
additional capability of using the hybrid support definition. Some experiments on
real world data are presented in Section 5, and Section 6 concludes the paper.

2 Motivating example

Automatic detection of semantic matches among ontology concepts has become
the initial and most challenging stage in most of ontology learning and matching
tasks [17, 18]. We approach the ontology learning problem by merging the
knowledge models which have been provided by different organization for the
same domain. If the knowledge models are successfully merged, i.e. a shared
agreement on the conceptualization of knowledge is obtained, we have obtained
an ontology for those organizations. Our intention in providing semantic
mappings among the concepts in knowledge models is to mainly exploit the
structure of the knowledge and avoid using any string match operators since they
are not always reliable. If a tree mining algorithm is to be efficiently applied to
this problem, then each knowledge model is most likely to be represented as one
transaction inside the tree database. The most promising initial match would be
the concept that occurs many times in all transactions. Once an initial match is
made we could proceed onto matching sub-structures that occur multiple times
within a transaction. As a simple illustrative example please consider Fig. 1,
where we present some knowledge models obtained using different data mining
tools on the publicly available ‘wine’ dataset obtained from [19].

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 15

Figure 1: Tree database consisting of transaction T1 and T2 corresponding to
knowledge models for ‘wine’ domain.

 In real world the data collected by different organizations can differ in various
aspects. Certain attributes may be found important by one organization and
irrelevant by another. To mimic the real-world scenario we have used different
sets of data and/or different pre- and post-pruning options for the data mining
techniques. This introduced some differences in the level of detail among the
obtained knowledge models. When knowledge models coming from different
organizations are to be merged, the concept names are usually different. Hence,
string match operators may not be appropriate even though it appears from the
example here that exact matches could be easily found. In Fig.1 each knowledge
model is considered as a separate transaction within the tree database. As can be
seen there are a few concepts that occur multiple times in each transaction The
concepts ‘color’ and ‘color_intensity’ appear two times in T1 and T2,
respectively. This provides a promising initial match and the similarity could be
propagated throughout the neighboring concepts. More generally, if there are ‘n’
knowledge models to be merged, one would mine patterns that occur in all n
transaction (transaction based support = n) and that occur multiple times in all n
transactions. This would not be possible using transaction or occurrence match
support solely and hence the need for the hybrid support definition. Other
examples could be taken from many web information systems applications,
where specialized queries on tree structured databases commonly take place.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

16 Data Mining VIII: Data, Text and Web Mining and their Business Applications

Consider a library based application where author information may be separately
stored in each transaction. A user may be interested in finding a number of
authors that have published at least X books with publisher Y. To satisfy this
query, the repetition of author-book-publisher relation within a transaction will
need to be considered. In these scenarios where the repetition of items within a
transaction is considered important hybrid support would provide useful
information automatically without any post processing which would need to
occur if either occurrence match or transaction based supports were used.

3 Problem statement

This section provides a general definition of the problem of frequent subtree
mining. Due to the space limitations and the current scope of our work, we do
not provide a detailed overview of the basic tree concepts, but refer the reader to
our previous works [3, 15], where such information has been provided.
Mining frequent subtrees. Let Tdb be a tree database consisting of N
transactions of trees, KN. The task of frequent subtree mining from Tdb with given
minimum support (σ), is to find all candidate subtrees that occur at least σ times
in Tdb.
Induced Subtree. A tree T’(r’, V’, L’, E’) is an ordered induced subtree of a tree
T (r, V, L, E) iff (1) V’⊆V, (2) E’⊆E, (3) L’⊆L and L’(v)=L(v), (4)∀ v’∈V’,
∀ v∈V and v’ is not the root node, and v’ has a parent in T, then
parent(v’)=parent(v), (5) the left-to-right ordering among the siblings in T’ is
preserved.

Figure 2: Example tree database (Tdb) with two transactions (T1 & T2).

Embedded Subtree. A tree T’(r’, V’, L’, E’) is an ordered embedded subtree of
a tree T(r, V, L, E) if and only if it satisfies properties 1, 2, 3 and 5 of an induced
subtree and it generalizes property (4) such that v’∈V’, v∈V and v’ is not the
root node, the sets ancestor(v’) and ancestor (v) form a non-empty intersection.
Examples of induced and embedded subtrees are given in Figure 2.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 17

 An unordered embedded or induced subtree would be the same as above,
except that condition 5 is relaxed so that the left-to-right ordering among the
siblings does not need to be preserved. For examples of different subtree types
please consider Fig. 2. Here we display an example database (Tdb) and two
subtrees st1 and st2. On the right of each subtree we display the coordinates of
valid occurrences of the subtree in each transaction when mining a particular
subtree type.
Support Definitions. We use t≺ k to denote an embedded subtree t that is
supported by transaction k ⊆ K in database of tree Tdb. This occurs when k
contains at least one occurrence of t. If there are L occurrences of t in k, let
function g(t,k) denote the number of occurrences of t in transaction k. For
transaction-based support, t≺ k=1 when there exists at least one occurrence of t
in transaction k. In other words, for transaction-based support, the support of a
subtree t is equal to the numbers of transactions that support subtree t. For
occurrence-match support, t≺ k corresponds to the number of all occurrences of
t in transaction k, t≺ k=g(t,k). Suppose that there are N transactions k1 to kN of
tree in Tdb, the support of an embedded subtree t in Tdb is defined as:

∑
=

N

i
ikt

1
≺

 (1)
Hybrid Support. As the name implies for this support definition we are
combining transaction based with occurrences match support. The support
threshold is denoted by ‘x|y’, where ‘x’ denotes the number of transactions that
support subtree t, and y denotes the number of times that t must occur in those x
transactions. Hence, using hybrid support threshold of x|y, a subtree is
considered frequent iff it occurs in x transactions and it occurs at least y times in
each of the x transactions.

4 Integrating hybrid support

This section first provides an overview of our general TMG framework that has
been applied to a variety of tree mining problems, and then proceeds onto
discussing the candidate counting phase which is where hybrid support
integration takes place. Since TMG framework has been presented in many of
the previous works we only provide a quick overview and refer the reader to [3,
5, 15] for more details. Please note that there could be some slight differences
since a few optimizations took place between the development of new
algorithms. To speed up the processing, the database of XML documents is first
transformed into a database of rooted integer-labeled ordered tree. The tree
database is traversed once to create a global sequence which stores each node in
the pre-order traversal together with the necessary node information (position,
label, scope). At the same time the set of frequent 1-subtrees is obtained by
hashing the encountered node labels. The tree database representation which
enables efficient candidate generation is constructed. TMG candidate generation
takes place and for each k ≥1 the right most path coordinates of each frequent
(k-1)-subtree (subtree consisting of k-1 nodes) are stored in ‘Fk-1’ hashtable.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

18 Data Mining VIII: Data, Text and Web Mining and their Business Applications

Each frequent (k-1)-subtree is extended one node at a time, starting from the last
node of its RMP (right most node), up to its root, whereby all k-subtrees are
enumerated. The whole process is repeated until all k-subtrees are enumerated
and counted.
 The main difference with the integration of the hybrid support definition lies
in the way the subtree occurrences are counted and hence the way the frequency
is determined. A detailed discussion of this aspect of our algorithm follows.
Candidate subtree counting. To determine if a subtree is frequent, we check
whether the number of times a subtree occurs is greater or equal to the specified
minimum support σ. In a database of labeled trees many instances of subtrees
can occur with the same encoding. Hence, the notion of encoding is utilized in
the candidate counting process. We say that a subtree with encoding L has a
frequency n if there are n instances of subtrees with the same encoding L, i.e. we
group subtree occurrences by its encoding.
Occurrence Coordinate (OC). A candidate subtree can occur at different
positions in the database and OC is used to denote the node positions of that
particular subtree so that it can be distinguished from other subtrees having the
same encoding. When generating k-subtree candidates from (k-1)-subtree, we
consider only frequent (k-1)-subtrees for extension. Each occurrence of k-subtree
in Tdb is encoded as occurrence coordinate r:[e1,…ek-1]; r refers to k-subtree
root position and e1,…,ek-1 refer to the positions of the rest of the nodes ordered
in pre-order traversal. Since we utilize our tree representation for efficient TMG
candidate generation the positions correspond to the slots in the structure.
However, to keep the explanation simple node positions will refer to the node
positions in the tree database (Tdb). From fig. 2, the OCs of the ordered
embedded 3-subtree ‘st1’ with encoding ‘b c / e’ in T1 are encoded as 1:[2,5],
and OCs of the ordered embedded 4-subtree ‘st2’ in T2 with encoding ‘a c c / e’
are encoded as 0:[4,5,6]. Each OC of a subtree describes an instance of each
occurrence of the subtree in Tdb. Hence, each candidate instance has an OC
associated with it. The storage requirement for longer subtrees can grow
significantly if we have to store each coordinate of each node in long subtrees.
RMP Occurrence Coordinate (RMP-OC). By its definition, RMP is the
shortest path from the right most node to the root node. Thus storing RMP
coordinates is always guaranteed to be maximal. The worst case of storing the
RMP coordinates would be equal to storing every coordinate of a node in a
subtree, i.e. when the subtree becomes a sequence (each node has degree 1). The
best case of storing RMP coordinates for k-subtrees where k>1 is that it stores
only 2 coordinates, i.e. whenever the length of the RMP is equal to 1. Given a k-
subtree T with OC [e0,e1,…ek-1], the RMP-OC of T, denoted by Ψ(T), is defined
by [e0,e1,…,ej] such that Ψ(T) ⊆ OC(T); ej = ek-1; and j ≤ k-1 and the path from ej
to e0 is the RMP of tree T.
Vertical Occurrence List (VOL). Each occurrence of a subtree is stored as
RMP-OC in VOL as previously described. The VOL of a subtree groups the
RMP-OCs of the subtree by its encoding and it is used to count the occurrence-
match support and transaction-based support. For occurrence-match support we
suppress the notion of the transaction id (tid) that is associated with each RMP-

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 19

OC. For transaction-based support the notion of tid of each occurrence
coordinate is accounted for when determining the support. This can be seen in
Fig. 3 where the tid is stored to the left of the table. When the occurrence-match
support is used, the frequency of ordered embedded subtree ‘st1’ of tree database
Tdb (fig. 2) with encoding ‘b c / e’, is equal to the size of the VOL, i.e. 3 (fig. 3).
When transaction-based support is used the support of ‘st1’ is equal to 1 since it
occurs in only one transaction. In example from fig. 3 there is only 1 transaction
(tid:1) that supports subtree ‘st1’. If we are considering hybrid support definition
then the support of ‘st1’ is 1|3, since it occurs three times in one transaction. On
the other hand if we were mining unordered embedded subtrees, then the hybrid
support of ‘st1’ would equal 2|1 since there is an additional occurrence of ‘st2’ in
transaction T2 and ‘st2’ occurs at least once in each transaction (as opposed to
three times when it only occurred in T1).

1 1 5
1 1 4
1 1 5
‘b c / e’

Figure 3: VOL(‘b c / e’) of ‘st1’ in fig. 2 when embedded subtrees are mined.

5 Experimental results and discussions

This section provides some experiments performed on the Prions dataset that
describes Protein Ontology database for Human Prion proteins in XML format
[20]. The dataset consists of 17511 transactions. The experiments were run on
3Ghz (Intel-CPU), 2Gb RAM, Mandrake 10.2 Linux machine and compilation
was performed using GNU g++ (3.4.3) with –g and –O3 parameters. The total
run-time and the number of frequent subtrees detected is displayed in Fig. 4, for
the IMB3-R [16] algorithm when varying hybrid support thresholds were used.
To our knowledge there are no other algorithms that use the same hybrid support
definition and hence providing comparisons with other tree mining approaches
was not possible at this stage. However, from Fig.4 we can see that the approach
is well scalable and the efficiency of our general TMG approach to tree mining is
preserved when hybrid support definition is integrated.
 Please note that we have intentionally used small hybrid support thresholds to
demonstrate the scalability of approach for cases when many frequent subtrees
exist. However, in practice one may use larger support thresholds to limit the
frequent subtrees to those that occur in a large percentage of transactions. This is
of course dependent on the user interests and the overall aim of the application.
In regards to the application of tree mining algorithms to Protein Ontology
datasets, the use of the hybrid support definition allows for easier comparisons of
protein datasets taken across protein families and species. The extracted patterns
would help in discovering of interesting similarities and differences among
protein families.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

20 Data Mining VIII: Data, Text and Web Mining and their Business Applications

0
2
4
6
8
10
12
14
16
18
20

10|2 20|2 30|2 40|2 50|2 60|2 70|2 80|2 90|2 100|2

Minimum Hybrid Support

Ti
m

e
(s

ec
on

ds
)

0

5000

10000

15000

20000

25000

30000

35000

10|2 20|2 30|2 40|2 50|2 60|2 70|2 80|2 90|2 100|2

Minimum Hybrid Support

Nu
m

be
r
of

 F
re

qu
en

t S
ub

tre
es

Figure 4: Total time taken (top) and number of frequent subtrees extracted
(bottom) from Prions dataset with varying hybrid support
thresholds.

6 Concluding remarks

In this paper we have provided a new hybrid support definition within the tree
mining framework. For certain applications an additional support definition was
required which will appropriately restrict the kind of subtree patterns extracted
and provide intra-transactional occurrence information for each subtree. We have
discussed some scenarios where this support definition is useful for providing the
necessary information that could not be obtained using TS or OC support
definitions. Our previously developed tree mining algorithms were extended to
mine frequent subtrees using the hybrid support definition and experiments on
real world data demonstrated the effectiveness of the method.

References

[1] Zaki, M. J., Efficient Mining of Trees in the Forest. SIGKDD '02,
Edmonton, Alberta, Canada, ACM, 2002.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 21

[2] Tan, H., Dillon, T.S., Feng, L., Chang, E., Hadzic, F., X3-Miner: mining
patterns from XML database. Data Mining 2005, Skiathos, Greece, 287-
297, 2005.

[3] Tan, H., Dillon, T.S., Hadzic, F., Chang, E. and Feng, L. MB3 Miner:
mining eMBedded sub-TREEs using Tree Model Guided candidate
generation, In Proc. of the 1st International Workshop on Mining Complex
Data, Houston, Texas, USA, 2005.

[4] Hido, S. & Kawano, H., AMIOT: Induced Ordered Tree Mining in Tree-
structured Databases, In Proceedings of the Fifth IEEE International
Conference on Data Mining (ICDM’05), Houston, Texas, USA, 2005.

[5] Hadzic, F., Tan, H., Dillon, T.S., UNI3: efficient algorithm for mining
unordered induced subtrees using TMG candidate generation, To appear
in IEEE Symposium on Computational Intelligence and Data Mining
(CIDM 2007), Honolulu, Hawaii, April 1-5, 2007.

[6] Xiao, Y., Yao, J.-F., Li, Z., Dunham, M.H., Efficient data mining for
maximal frequent subtrees. In Proceedings of the 3rd IEEE International
Conference on Data Mining (ICDM 2003), Melbourne, Florida, USA,
379-386, 2003.

[7] Nijssen, S. & Kok, J.N., Efficient discovery of frequent unordered trees.
In Proc. of the 1st International Workshop Mining Graphs, Trees, and
Sequences, Dubrovnik, Croatia.

[8] Chi, Y., Yang, Y., Muntz, R.R., HybridTreeMiner: An efficient algorithm
for mining frequent rooted trees and free trees using canonical forms. In
Proceedings of the 16th International Conference on Scientific and
Statistical Database Management, Santorini Island, Greece.

[9] Zaki, M.J., Efficiently Mining Frequent Embedded Unordered Trees,
Fundamenta Informaticae 65, IOS Press, pp. 1-20, 2005.

[10] Hadzic, F., Tan, H., Dillon, T.S., Chang, E., U3 – Unordered subtree
mining using TMG candidate generation and the level of embedding
constraint, Submitted to the 13th International Conference on Knowledge
Discovery and Data Mining, San Jose, California, Aug 12-15, 2007.

[11] Chi, Y., Yirong, Y., Muntz, R. R., Canonical Forms for Labeled Trees and
Their Applications in Frequent Subtree Mining, Knowledge and
Information Systems, 2004.

[12] Hadzic, F., Dillon, T. S., Sidhu, A., Chang, E., Tan, H., Mining
Substructures in Protein Data, IEEE ICDM 2006 Workshop on Data
Mining in Bioinformatics (DMB 2006), in conjunction with the 2006
International Conference on Data Mining, 18-22 December, Hong Kong,

[13] Shasha, D., Wang, J.T.L., Zhang, S., “Unordered Tree Mining with
Applications to Phylogeny”, 20th International Conference on Data
Engineering, 2004.

[14] Wang, J. T. L., Shan, H., Shasha, D., and W. H. Piel, Treerank: A
similarity measure for nearest neighbor searching in phylogenetic
databases, In Proc. of the 15th Intl. Conf. on Scientific and Statistical
Database Management (SSDBM'03), 2003.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

22 Data Mining VIII: Data, Text and Web Mining and their Business Applications

[15] Tan, H., Dillon, T.S., Hadzic, F., Feng, L., Chang, E. IMB3-Miner:
Mining Induced/Embedded subtrees by constraining the level of
embedding. In Proceedings of Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2006), Singapore, 2006.

[16] Tan, H., Dillon, T.S., Hadzic, F., Chang, E., Feng, L., Mining
induced/embedded subtrees using the level of embedding constraint,
Submitted to Fundamenta Informaticae, IOS Press, 2007.

[17] Giunchiglia, F. & Shvaiko, P., Semantic matching, Ontologies and
Distributed Systems workshop, IJCAI, 2003.

[18] Gómez-Pérez, A., Fernández-López, M., Corcho, O. Ontological
engineering: with examples from the areas of knowledge management, e-
commerce and the semantic Web. Springer-Verlag, London, 2003

[19] Blake, C., Keogh, E. & Merz, C.J., 1998. “UCI Repository of Machine
Learning Databases”, Irvine, CA: University of California, Department of
Information and Computer Science., 1998.
[http://www.ics.uci.edu/~mlearn/MLRepository.html].

[20] Sidhu, A.S., Dillon, T.S., Sidhu, B.S., Setiawan, H., A Unified
Representation of Protein Structure Databases, in Biotechnological
Approaches for Sustainable Development, M. S. Reddy and S. Khanna,
Eds. India: Allied Publishers, pp. 396-408, 2004.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 23

