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Abstract 

Frequent subtree mining has found many useful applications in areas where the 
domain knowledge is presented in a tree structured form, such as bioinformatics, 
web mining, scientific knowledge management etc. It involves the extraction of a 
set of frequent subtrees from a tree structured database, with respect to the user 
specified minimum support. To date, the commonly used support definitions are 
occurrence match and transaction based support. There are some application 
areas where using either of these support definitions would not provide the 
desired information automatically, but instead further querying on the extracted 
patterns needs to take place. This has motivated us to develop a hybrid support 
definition that constrains the kind of patterns to be extracted and provides 
additional information not provided by previous support definitions. This would 
simplify some of the reasoning process which commonly takes place in certain 
applications. In this paper we demonstrate the need for the hybrid support 
definition by presenting some applications of tree mining where traditional 
support definitions would fall short in providing the desired information. We 
have extended our previous tree mining algorithms to mine frequent subtrees 
using the hybrid support definition. Using real-world and synthetic data sets we 
demonstrate the effectiveness of the method, and further implications for 
reasoning with the extracted patterns.  
Keywords:  frequent subtree mining, hybrid support, knowledge merging.  
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1 Introduction 

In domains where the formally represented information is of tree structured 
form, frequent subtree mining techniques can be used for efficient querying and 
analysis of the domain knowledge. Tree structured information is increasingly 
found in biomedical, web and scientific domains and hence tree mining is a 
popular technique for many applications in these domains. The problem of 
frequent subtree mining can be generally stated as: given a tree database Tdb and 
minimum support threshold (σ), find all subtrees that occur at least σ times in 
Tdb. Within this framework the two most commonly mined subtrees are induced 
and embedded. An induced subtree preserves the parent-child relationships of 
each node in the original tree. In addition to this, an embedded subtree allows a 
parent in the subtree to be an ancestor in the original tree and hence ancestor-
descendant relationships are preserved over several levels. Depending on 
whether the order of sibling nodes is to be considered important these subtrees 
can be further split in ordered and unordered subtrees.  

 There have been a number of algorithms developed for frequent subtree 
mining and the scope of their application usually depends on the assumptions 
made about the data structure that the algorithm can be applied to and to the 
types of subtrees extracted.  Some of the algorithms for extracting frequent 
embedded subtrees from a database of rooted ordered labeled subtrees are 
Treeminer [1], X3-Miner [2], MB3-Miner [2], whereas AMIOT [4] mines 
induced ordered trees. UNI3 [5], PathJoin [6], uFreqt [7], and HybridTreeMiner 
[8], mine induced, unordered subtrees, and SLEUTH [9] and U3 [10] extract 
embedded unordered subtrees. FreeTreeMiner [11] extracts free trees in a graph 
database. From the application perspective, some tree mining algorithms have 
been successfully applied to biological domains [12–14].   

 Our work in the area of frequent subtree mining is characterized by adopting 
a Tree Model Guided (TMG) candidate generation as opposed to the join 
approach which is commonly used. This non-redundant systematic enumeration 
model ensures only valid candidates are generated which conform to the actual 
tree structure of the data. Furthermore, our unique Embedding List 
representation of the tree structure has allowed for an efficient implementation of 
the TMG approach which has resulted in efficient algorithms for mining 
embedded (MB3) [3] and induced (IMB3) [15] subtrees, from a databases of 
labeled rooted ordered subtrees. MB3-R and IMB3-R algorithms (IMB3Jref) are 
latest implementations that adopt a more space efficient global representation 
and only store the right most path information for candidate subtrees. Motivated 
by the fact that in many applications of frequent subtree mining the order among 
siblings is not considered important we have recently shifted our focus to 
unordered tree mining and have developed the UNI3 [5] and U3 [10] algorithms 
for mining frequent unordered induced subtrees. At this stage we are applying 
our developed algorithms to the ontology learning and matching problems. In 
this process we notice that there are some changes required for the algorithms to 
be efficiently applied for the ontology specific problems. The first change we 
propose in this paper is an extension to the current support definitions.   
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 Currently there are two support definitions used for determining the 
frequency of a subtree, and both are suitable for certain applications. Transaction 
based support (TS)  [1] is used when only the existence of items within a 
transaction is considered important, whereas occurrence match (OC) [1, 3] 
support takes the repetition of items in a transaction into account and counts the 
subtree occurrences in the database as a whole. In certain applications (an 
example of which will be provided in the next section) the number of times a 
subtree occurs within a transaction is of interest. Current support definitions fall 
short on providing such information since they either just check for the existence 
of a subtree in a transaction using TS or count the total number of occurrences 
using OC. Therefore, we felt that an additional support definition was required 
which will appropriately restrict the kind of subtree patterns extracted and 
provide intra-transactional occurrence information for each subtree. In this paper 
we provide this ‘hybrid’ support definition and demonstrate the implications of 
using such support. We discuss some scenarios where this support definition is 
useful for providing the necessary information that could not be obtained using 
TS or OC support definitions. Our previously developed tree mining algorithms 
were extended to mine frequent subtrees using the hybrid support definition, and 
we describe our general TMG framework with the new support definition in 
place.      

 The rest of the paper is organized as follows. Section 2 provides a motivating 
example and discusses some scenarios where the hybrid support definition would 
be useful. The tree mining problem is briefly presented in Section 3. Section 4 
provides an overview of our general TMG approach to tree mining with the 
additional capability of using the hybrid support definition. Some experiments on 
real world data are presented in Section 5, and Section 6 concludes the paper. 

2 Motivating example  

Automatic detection of semantic matches among ontology concepts has become 
the initial and most challenging stage in most of ontology learning and matching 
tasks [17, 18]. We approach the ontology learning problem by merging the 
knowledge models which have been provided by different organization for the 
same domain. If the knowledge models are successfully merged, i.e. a shared 
agreement on the conceptualization of knowledge is obtained, we have obtained 
an ontology for those organizations. Our intention in providing semantic 
mappings among the concepts in knowledge models is to mainly exploit the 
structure of the knowledge and avoid using any string match operators since they 
are not always reliable.  If a tree mining algorithm is to be efficiently applied to 
this problem, then each knowledge model is most likely to be represented as one 
transaction inside the tree database. The most promising initial match would be 
the concept that occurs many times in all transactions. Once an initial match is 
made we could proceed onto matching sub-structures that occur multiple times 
within a transaction. As a simple illustrative example please consider Fig. 1, 
where we present some knowledge models obtained using different data mining 
tools on the publicly available ‘wine’ dataset obtained from [19]. 
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Figure 1: Tree database consisting of transaction T1 and T2 corresponding to 
knowledge models for ‘wine’ domain. 

     In real world the data collected by different organizations can differ in various 
aspects. Certain attributes may be found important by one organization and 
irrelevant by another. To mimic the real-world scenario we have used different 
sets of data and/or different pre- and post-pruning options for the data mining 
techniques. This introduced some differences in the level of detail among the 
obtained knowledge models. When knowledge models coming from different 
organizations are to be merged, the concept names are usually different. Hence, 
string match operators may not be appropriate even though it appears from the 
example here that exact matches could be easily found. In Fig.1 each knowledge 
model is considered as a separate transaction within the tree database. As can be 
seen there are a few concepts that occur multiple times in each transaction The 
concepts ‘color’ and ‘color_intensity’ appear two times in T1 and T2, 
respectively. This provides a promising initial match and the similarity could be 
propagated throughout the neighboring concepts. More generally, if there are ‘n’ 
knowledge models to be merged, one would mine patterns that occur in all n 
transaction (transaction based support = n) and that occur multiple times in all n 
transactions. This would not be possible using transaction or occurrence match 
support solely and hence the need for the hybrid support definition. Other 
examples could be taken from many web information systems applications, 
where specialized queries on tree structured databases commonly take place.  
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Consider a library based application where author information may be separately 
stored in each transaction. A user may be interested in finding a number of 
authors that have published at least X books with publisher Y. To satisfy this 
query, the repetition of author-book-publisher relation within a transaction will 
need to be considered. In these scenarios where the repetition of items within a 
transaction is considered important hybrid support would provide useful 
information automatically without any post processing which would need to 
occur if either occurrence match or transaction based supports were used.  

3 Problem statement 

This section provides a general definition of the problem of frequent subtree 
mining. Due to the space limitations and the current scope of our work, we do 
not provide a detailed overview of the basic tree concepts, but refer the reader to 
our previous works [3, 15], where such information has been provided. 
Mining frequent subtrees. Let Tdb be a tree database consisting of N 
transactions of trees, KN. The task of frequent subtree mining from Tdb with given 
minimum support (σ), is to find all candidate subtrees that occur at least σ times 
in Tdb.  
Induced Subtree. A tree T’(r’, V’, L’, E’) is an ordered induced subtree of a tree 
T (r, V, L, E) iff (1) V’⊆V, (2) E’⊆E, (3) L’⊆L and L’(v)=L(v), (4)∀ v’∈V’, 
∀ v∈V and v’ is not the root node, and v’ has a parent in T, then 
parent(v’)=parent(v),  (5) the left-to-right ordering among the siblings in T’ is 
preserved.  
 

 
Figure 2: Example tree database (Tdb) with two transactions (T1 & T2). 

Embedded Subtree. A tree T’(r’, V’, L’, E’) is an ordered embedded subtree of 
a tree T(r, V, L, E) if and only if it satisfies properties 1, 2, 3 and 5 of an induced 
subtree and it generalizes property (4) such that v’∈V’, v∈V and v’ is not the 
root node, the sets ancestor(v’) and ancestor (v) form a non-empty intersection. 
Examples of induced and embedded subtrees are given in Figure 2. 
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     An unordered embedded or induced subtree would be the same as above, 
except that condition 5 is relaxed so that the left-to-right ordering among the 
siblings does not need to be preserved. For examples of different subtree types 
please consider Fig. 2. Here we display an example database (Tdb) and two 
subtrees st1 and st2. On the right of each subtree we display the coordinates of 
valid occurrences of the subtree in each transaction when mining a particular 
subtree type. 
Support Definitions. We use t≺ k to denote an embedded subtree t that is 
supported by transaction k ⊆ K in database of tree Tdb. This occurs when k 
contains at least one occurrence of t. If there are L occurrences of t in k, let 
function g(t,k) denote the number of occurrences of t in transaction k. For 
transaction-based support, t≺ k=1 when there exists at least one occurrence of t 
in transaction k. In other words, for transaction-based support, the support of a 
subtree t is equal to the numbers of transactions that support subtree t. For 
occurrence-match support, t≺ k corresponds to the number of all occurrences of 
t in transaction k, t≺ k=g(t,k). Suppose that there are N transactions k1 to kN of 
tree in Tdb, the support of an embedded subtree t in Tdb is defined as: 

∑
=

N

i
ikt

1
≺

                                                     (1) 
Hybrid Support. As the name implies for this support definition we are 
combining transaction based with occurrences match support. The support 
threshold is denoted by ‘x|y’, where ‘x’ denotes the number of transactions that 
support subtree t, and y denotes the number of times that t must occur in those x 
transactions. Hence, using hybrid support threshold of x|y, a subtree is 
considered frequent iff it occurs in x transactions and it occurs at least y times in 
each of the x transactions. 

4 Integrating hybrid support 

This section first provides an overview of our general TMG framework that has 
been applied to a variety of tree mining problems, and then proceeds onto 
discussing the candidate counting phase which is where hybrid support 
integration takes place. Since TMG framework has been presented in many of 
the previous works we only provide a quick overview and refer the reader to [3, 
5, 15] for more details. Please note that there could be some slight differences 
since a few optimizations took place between the development of new 
algorithms. To speed up the processing, the database of XML documents is first 
transformed into a database of rooted integer-labeled ordered tree.  The tree 
database is traversed once to create a global sequence which stores each node in 
the pre-order traversal together with the necessary node information (position, 
label, scope).  At the same time the set of frequent 1-subtrees is obtained by 
hashing the encountered node labels. The tree database representation which 
enables efficient candidate generation is constructed. TMG candidate generation 
takes place and for each k ≥1 the right most path coordinates of each frequent   
(k-1)-subtree (subtree consisting of k-1 nodes) are stored in ‘Fk-1’ hashtable. 
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Each frequent (k-1)-subtree is extended one node at a time, starting from the last 
node of its RMP (right most node), up to its root, whereby all k-subtrees are 
enumerated. The whole process is repeated until all k-subtrees are enumerated 
and counted.  
     The main difference with the integration of the hybrid support definition lies 
in the way the subtree occurrences are counted and hence the way the frequency 
is determined. A detailed discussion of this aspect of our algorithm follows.  
Candidate subtree counting. To determine if a subtree is frequent, we check 
whether the number of times a subtree occurs is greater or equal to the specified 
minimum support σ. In a database of labeled trees many instances of subtrees 
can occur with the same encoding. Hence, the notion of encoding is utilized in 
the candidate counting process. We say that a subtree with encoding L has a 
frequency n if there are n instances of subtrees with the same encoding L, i.e. we 
group subtree occurrences by its encoding. 
Occurrence Coordinate (OC). A candidate subtree can occur at different 
positions in the database and OC is used to denote the node positions of that 
particular subtree so that it can be distinguished from other subtrees having the 
same encoding. When generating k-subtree candidates from (k-1)-subtree, we 
consider only frequent (k-1)-subtrees for extension. Each occurrence of k-subtree 
in Tdb is encoded as occurrence coordinate r:[e1,…ek-1]; r refers to k-subtree 
root position and e1,…,ek-1 refer to the positions of the rest of the nodes ordered 
in pre-order traversal. Since we utilize our tree representation for efficient TMG 
candidate generation the positions correspond to the slots in the structure. 
However, to keep the explanation simple node positions will refer to the node 
positions in the tree database (Tdb). From fig. 2, the OCs of the ordered 
embedded 3-subtree ‘st1’ with encoding ‘b c / e’ in T1 are encoded as 1:[2,5], 
and OCs of the ordered embedded 4-subtree ‘st2’ in T2 with encoding ‘a c c / e’ 
are encoded as 0:[4,5,6]. Each OC of a subtree describes an instance of each 
occurrence of the subtree in Tdb. Hence, each candidate instance has an OC 
associated with it. The storage requirement for longer subtrees can grow 
significantly if we have to store each coordinate of each node in long subtrees.  
RMP Occurrence Coordinate (RMP-OC). By its definition, RMP is the 
shortest path from the right most node to the root node. Thus storing RMP 
coordinates is always guaranteed to be maximal. The worst case of storing the 
RMP coordinates would be equal to storing every coordinate of a node in a 
subtree, i.e. when the subtree becomes a sequence (each node has degree 1). The 
best case of storing RMP coordinates for k-subtrees where k>1 is that it stores 
only 2 coordinates, i.e. whenever the length of the RMP is equal to 1. Given a k-
subtree T with OC [e0,e1,…ek-1], the RMP-OC of T, denoted by Ψ(T), is defined 
by [e0,e1,…,ej] such that Ψ(T) ⊆ OC(T); ej = ek-1; and j ≤ k-1 and the path from ej 
to e0 is the RMP of tree T.  
Vertical Occurrence List (VOL). Each occurrence of a subtree is stored as 
RMP-OC in VOL as previously described. The VOL of a subtree groups the 
RMP-OCs of the subtree by its encoding and it is used to count the occurrence-
match support and transaction-based support. For occurrence-match support we 
suppress the notion of the transaction id (tid) that is associated with each RMP-
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OC. For transaction-based support the notion of tid of each occurrence 
coordinate is accounted for when determining the support. This can be seen in 
Fig. 3 where the tid is stored to the left of the table. When the occurrence-match 
support is used, the frequency of ordered embedded subtree ‘st1’ of tree database 
Tdb (fig. 2) with encoding ‘b c / e’, is equal to the size of the VOL, i.e. 3 (fig. 3). 
When transaction-based support is used the support of ‘st1’ is equal to 1 since it 
occurs in only one transaction. In example from fig. 3 there is only 1 transaction 
(tid:1) that supports subtree ‘st1’.  If we are considering hybrid support definition 
then the support of ‘st1’ is 1|3, since it occurs three times in one transaction. On 
the other hand if we were mining unordered embedded subtrees, then the hybrid 
support of ‘st1’ would equal 2|1 since there is an additional occurrence of ‘st2’ in 
transaction T2 and ‘st2’ occurs at least once in each transaction (as opposed to 
three times when it only occurred in T1). 
 

1 1 5 
1 1 4 
1 1 5 
‘b c / e’ 

Figure 3: VOL(‘b c / e’) of ‘st1’ in fig. 2 when embedded subtrees are mined. 

5 Experimental results and discussions 

This section provides some experiments performed on the Prions dataset that 
describes Protein Ontology database for Human Prion proteins in XML format 
[20]. The dataset consists of 17511 transactions. The experiments were run on 
3Ghz (Intel-CPU), 2Gb RAM, Mandrake 10.2 Linux machine and compilation 
was performed using GNU g++ (3.4.3) with –g and –O3 parameters. The total 
run-time and the number of frequent subtrees detected is displayed in Fig. 4, for 
the IMB3-R [16] algorithm when varying hybrid support thresholds were used. 
To our knowledge there are no other algorithms that use the same hybrid support 
definition and hence providing comparisons with other tree mining approaches 
was not possible at this stage. However, from Fig.4 we can see that the approach 
is well scalable and the efficiency of our general TMG approach to tree mining is 
preserved when hybrid support definition is integrated.  
     Please note that we have intentionally used small hybrid support thresholds to 
demonstrate the scalability of approach for cases when many frequent subtrees 
exist. However, in practice one may use larger support thresholds to limit the 
frequent subtrees to those that occur in a large percentage of transactions. This is 
of course dependent on the user interests and the overall aim of the application. 
In regards to the application of tree mining algorithms to Protein Ontology 
datasets, the use of the hybrid support definition allows for easier comparisons of 
protein datasets taken across protein families and species. The extracted patterns 
would help in discovering of interesting similarities and differences among 
protein families.  
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Figure 4: Total time taken (top) and number of frequent subtrees extracted 
(bottom) from Prions dataset with varying hybrid support 
thresholds. 

6 Concluding remarks 

In this paper we have provided a new hybrid support definition within the tree 
mining framework. For certain applications an additional support definition was 
required which will appropriately restrict the kind of subtree patterns extracted 
and provide intra-transactional occurrence information for each subtree. We have 
discussed some scenarios where this support definition is useful for providing the 
necessary information that could not be obtained using TS or OC support 
definitions. Our previously developed tree mining algorithms were extended to 
mine frequent subtrees using the hybrid support definition and experiments on 
real world data demonstrated the effectiveness of the method.  
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