
Multi-relational data mining in                     
Microsoft SQL Server 2005 

C. L. Curotto1 & N. F. F. Ebecken2 & H. Blockeel3 
1PPGCC/UFPR, Universidade Federal do Paraná, Brazil 
2COPPE/UFRJ, Universidade Federal do Rio de Janeiro, Brazil 
3DTAI/DCS/KUL, Katholieke Universiteit Leuven, Belgium 

Abstract 

Most real life data are relational by nature. Database mining integration is an 
essential goal to be achieved. Microsoft SQL Server (MSSQL) seems to provide 
an interesting and promising environment to develop aggregated multi-relational 
data mining algorithms by using nested tables and the plug-in algorithm 
approach. However, it is currently unclear how these nested tables can best be 
used by data mining algorithms. In this paper we look at how the Microsoft 
Decision Trees (MSDT) handles multi-relational data, and we compare it with 
the multi-relational decision tree learner TILDE. In the experiments we perform, 
MSDT has equally good predictive accuracy as TILDE, but the trees it gives 
either ignore the relational information, or use it in a way that yields              
non-interpretable trees. As such, one could say that its explanatory power is 
reduced, when compared to a multi-relational decision tree learner. We conclude 
that it may be worthwhile to integrate a multi-relational decision tree learner in 
MSSQL. 
Keywords: multi-relational, data mining, algorithm, decision trees, databases, 
sql server, nested tables. 

1 Introduction 

To achieve the tight coupling of Data Mining (DM) techniques in Database 
Management Systems (DBMS) technology, a number of approaches have been 
developed in the last years. These approaches include solutions provided by both 
company and academic research groups. 

Toward this objective, the Microsoft (MS) Object Linking and Embedding 
Database for DM (OLE DB DM) technology provides an industry standard for 
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developing DM algorithms [1]. This technology was first included in the 
MSSQL 2000 release [2]. The MSSQL Analysis Services (SSAS) has included a 
DM provider supporting two DM algorithms (one for classification by decision 
trees and another for clustering) and the DM aggregator feature made possible 
for developers and researchers to implement new DM algorithms. The MSSQL 
2005 version [2] has included more seven algorithms as well as a new way to 
aggregate new algorithms, using a plug-in approach instead of DM providers. 

 

 

Figure 1: Registration – Four tables relational data. 

On the other hand, relational data impose some additional effort to deal 
with them. While conventional classifiers assume that data sets are recorded in 
single flat files or tables, a relational classifier has to face with more complex 
data structures as shown by the simple Registration relational dataset [3] 
represented by four tables in Fig. 1. In order to predict which participants are 
going to attend a party, one needs participant personal data provided by table 
Participant, participant employer data provided by table Company, participant 
course subscriptions data provided by table Subscription and course data 
provided by table Course. 

The usual approach to solve this problem is to use a single flat table, as 
shown in Fig. 2, assembled by performing a relational join operation on the four 
tables. But this approach may produce extremely large and impractical to handle 
tables, with lots of repeated and null data. 

In consequence of those problems, multi-relational DM (MRDM) 
approaches have been receiving considerable attention in the literature [3-11]. 
These approaches rely on developing specific algorithms to deal with the 
relational feature of the data. 

By another way, OLE DB DM technology supports nested tables (also 
known as table columns). As shown in Fig. 3, the row sets represent uniquely the 
tables in a nested way. There are no redundant or null data for the participant in 
each row set. One row per participant is all that is needed, and the nested 
columns of the row set contain the data pertinent to that participant. 

In the next items, it will be presented a brief overview of the approaches 
used to deal with MRDM, as well as the results of experiments carried out to 

Course 

Company 
Subscription Participant 
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evaluate the scope of OLE DB DM approach. In these experiments the results of 
MSDT algorithm are compared with those produced by TILDE [4]. Finally, the 
conclusion is shown together with some recommendations to make 
improvements in this field of research. 

 

 

Figure 2: Registration – Unique table. 
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Figure 3: Registration – Nested table. 

2 Multi-relational DM approaches 

2.1 Unique table approach 

Most classifiers work on a single table (attribute-value learning) with a fixed set 
of attributes. So it is restrictive in DM applications with multiple tables. It is 
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possible to construct, by hand, a single table by performing a relational join 
operation on multiple tables using propositional logic as shown in Fig. 2. 

For one-to-one and many-to-one relationships, one can join in the extra 
fields to the original relation without problems. For one to many relationships, 
there are two ways to handle them. The first one is just compute the join, but this 
leads to data redundancy, missing values, statistical skew, and loss of meaning. 
A single instance in the original database is mapped onto multiple instances in 
the new table, which is problematic. The second way is aggregate the 
information in different tuples representing the same individual into one tuple 
after computing the join. This removes the problems mentioned above, but 
causes loss of information because details originally present have been 
summarized away. 

2.2 Multi-relational DM algorithms 

This is a group of several approaches [5]: Propositional Learning; Inductive 
Logic Programming (ILP); Multi-Relational DM (MRDM); First Order Bayesian 
Networks (FOBN). 

The Propositional Learning approach is a two independent step process, in 
which the initial one produces automatically a flat table that can be processed in 
the second step by any DM algorithm. It is essentially the same as described in 
the unique table approach, and has the same problems. 

The ILP [3,4,7] approaches handle multiple tables directly, using a first 
order logic language to describe patterns extending over multiple tuples. These 
approaches include: Progol, First Order Inductive Logic (FOIL), TILDE [4], 
Inductive Constraint Logic (ICL), and CrossMine [8]. 

The MRDM approaches include a number of variants such as those 
presented by the following studies: Multi-Relational Decision Tree Induction [9], 
Multi-Relational Decision Tree (MRDT) [5], Multi-Relational Naïve Bayes 
Classifier (Mr-SBC) [10], and Multi-Relational Model Trees with support to 
regression (Mr-SMOTI) [11]. They do essentially the same as the IPL 
approaches do, but work in the relational database setting. 

Finally, FOBN approaches extend the ILP or MRDM approaches by 
combining them with probabilistic (Bayesian) reasoning. These approaches 
include: Probabilistic Relational Model (PRM) [12], Probabilistic Logic Program 
(PLP), Bayesian Logic Program (BLP), and Stochastic Logic Program (SLP). 

2.3 OLE DB DM nested tables 

MS OLE DB DM uses nested DM columns (nested tables). DM models (DMMs) 
use this nested column structure for both input and output data, as the syntax 
used to populate a DMM with training data allows nested columns to be 
represented as sub-queries. DM algorithms cannot work directly with this 
approach. Unnesting them using the traditional unnest operator yields a single 
table in the same format as the join approach mentioned above, with the same 
problems. To avoid these problems is used a sparse matricial approach. 
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First of all are produced expanded versions of the main (case and nested) 
tables by joining them on their support tables. Support tables are those that the 
main tables hold one-to-one or many-to-one relationship with them. The lines of 
this matrix are the expanded case table records and the matrix columns are the 
compound attributes. These compound attributes are the expanded case table 
normal attributes plus additional attributes that correspond to all elements of the 
expanded nested tables mapped by columns. 

To exemplify this approach the relational Registration DMM shown in 
Fig. 4 will be used. The Company support table is joined with Participant case 
table to produce its expanded version, addind more one attribute 
(CompanyType) to the original main table. The join of Subscription nested 
table with Course support table adds more two attributes (Lenght and Type) to 
the nested table producing its expanded version. 
 

 

Figure 4: Registration - DMM schema. Participant is the case table, 
Subscription is the nested table and Course and Company are the 
support tables. 

 

Figure 5: Registration – Sparse matrix normal attributes. 

The Registration sparse matrix has nine lines (the dataset cases) and sixty 
attributes. Four of them are the normal attributes (Fig. 5) and fifty-six are the 
additional attributes mapped from the columns of the expanded nested table (Fig. 
6). These fifty-six attributes correspond to the fourteen records times the four 

Attributte number/attribute name 
 

0 1 2 3 

Num Case Num of 
attributes Party Company Job CompanyType 

1 1:adams 16 2:yes 2:scuf 3:researcher 2: university 

2 2:blake 12 2:yes 1:jvt 2:president 1:commercial 

3 3:king 16 2:yes 3:ucro 1:manager 3: university (2:) 

4 martin 4 2:yes 3:ucro 1:manager 3: university (2:) 

5 4:miller 8 2:yes 1:jvt 1:manager 1:commercial 

6 porter 4 2:yes 2:scuf 3:researcher 2: university 

7 5:scott 12 1:no 2:scuf 3:researcher 2: university 

8 6:smith 8 1:no 1:jvt 1:manager 1:commercial 

9 7:turner 12 1:no 3:ucro 3:researcher 3: university (2:) 
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attributes of the Subscription expanded nested table. The name of each 
additional attribute is composed by the name of the nested table plus the name 
(or number) of its key attribute (ID) plus the name of the attribute considered as 
it can be seen in Fig. 6. Some problems with attribute values could be observed. 
In Fig. 5 the CompanyType attribute must have only two different values but 
three values were retrieved from the dataset. This same behaviour was observed 
in several others attributes as it can be seen in Fig. 6. The reason for this 
unexpected behaviour is not clear to us. 
 

 
Figure 6: Registration – Sparse matrix additional attributes. 

3 Computational experiments  

Two experiments were carried out in order to evaluate the scope of MSSQL 
while dealing with MRDM. Two datasets are used: Registration [3] and 
Mutagenesis [13]. The numeric results and the decision trees obtained by MSDT 
(using the sparse matrix) in these experiments were compared with those 
produced by TILDE (using the original data). These experiments were made by 
using an IBM PC compatible microcomputer, Intel Pentium M 2.00 GHz 
processor inside, 1.0 GB of RAM memory, 1.5 GB virtual memory, 100 MB 
hard disk, MS Windows XP Pro SP2 and MSSQL 2005 Enterprise installed. 
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Figure 7: Registration – MSDT Decision tree. 

 

Figure 8: Registration – TILDE Decision tree. 

3.1 Registration dataset 

Both MSDT and TILDE achieved full accuracy while training this dataset and 
using itself as the test dataset. TILDE showed a meaningful decision tree (Fig. 
8), stating that a participant attends the party if he or she has a subscription to a 
course of length 2, while MDST showed attributes in its decision tree (Fig. 7) 
that are difficult to interpret, e.g., subscription(9).Name not= missing has no real 
meaning because the subscription numbering is not defined globally.  

3.2 Mutagenesis dataset 

This dataset concerns with the problem of identifying the mutagenic compounds 
and have been extensively used to test both ILP and MRDM systems. It was 
considered, analogously to related experiments in the literature, the regression 
friendly dataset of 188 elements. It was used the background knowledge BK2, 
which consists of those data obtained with the modelling package Quanta, plus 
indicators ind1, indA and attributes logp and lumo [11]. Only two classes were 
considered for the prediction attribute: positive or negative. We used ten-fold 
cross-validation to estimate the accuracy of the classifiers. The DMM schema is 
shown in Fig. 9. Some parameters were the same for both MSDT1 and MSDT2: 
COMPLEXITY_PENALTY = 0.1, MAXIMUM_INPUT_ATTRIBUTES = 255, 
MAXIMUM_OUTPUT_ATTRIBUTES = 255, SCORE_METHOD = 4 and 
SPLIT_METHOD = 3. MSDT1 uses MINIMUM_SUPPORT = 10 and MSDT2 
uses MINIMUM_SUPPORT = 1. MSDT1 configuration uses all input attributes 
and MSDT2 uses only Atom and Bond input attributes. 

MSDT1 achieved 87±6% of accuracy while MSDT2 got 66±13% (because 
the Molecule input attributes were deliberately ignored). TILDE got 80±3% of 

subscription(-A),course_len(A,2) ?  
+--yes: [party_no] 3.0 [[party_yes:0.0,party_no:3.0]] 
+--no:  [party_yes] 6.0 [[party_yes:6.0,party_no:0.0]] 
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accuracy. Figs. 10 to 12 show one of the ten-fold cross validation decision trees 
produced by the corresponding classifiers. TILDE showed a meaningful decision 
tree (Fig. 12) compared with those produced by MDST (Fig. 10 and 11). By 
example, tests such as atom(d104_38).Type not = missing (Fig. 11) are not 
interpretable because there is no natural numbering for the atoms. This illustrates 
the loss of meaning: atom #n has a meaning in the current representation of the 
data (it is the n'th atom in our ordered list), but not in the real world (because the 
atoms in a molecule are not actually ordered). Multi-relational trees, of which the 
TILDE trees shown in Fig. 12 are an example, avoid this problem: they refer to 
atoms not with some specific ID (e.g., d104_38) but through variables and 
properties of these (e.g., a C-atom of type 35) that always have meaning.  That is 
the crucial difference between the MSDT trees shown here, and multi-relational 
trees. 
 

 

Figure 9: Mutagenesis – DMM schema. 

 

Figure 10: Mutagenesis – MSDT1 Decision Tree. 
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Figure 11: Mutagenesis – MSDT2 Decision Tree. 

 

Figure 12: Mutagenesis – TILDE Decision tree. 

For this dataset it was produced a sparse matrix with 188 cases and 23,996 
attributes. Five of them are the normal attributes, 6,309 for Bond(i).Type and 
17,682 for Atom(j).Element, Atom(j).Charge and Atom(j).Type (3*5894). For 
huge datasets with several nested tables it suggests an explosion on the number 
of additional attributes that can be unfeasible to handle. 

4 Conclusion and future work 

MSDT showed very good results when using only attributes of the target table, 
but it seems it cannot handle information in nested tables in a meaningful way: 
trees thus produced are meaningless and tend to obtain poor predictive accuracy 
on unseen data.  There are, however, a number of questions still unanswered 
with respect to the plug-in framework of MS SQL and the use of MSDT 
approach in this framework.  In particular, it is unclear what the best approach 
would be to implement a truly relational algorithm in this framework. 

We are running more experiments to better understand the plug-in 
framework and furthermore we are investigating which algorithm could be the 
more suitable to be implemented in this framework. 

In the experiments we perform, MSDT has equally and even better good 
predictive accuracy as TILDE, but the trees it gives either ignore the relational 
information, or use it in a way that yields non-interpretable trees. As such, one 
could say that its explanatory power is reduced, when compared to a multi-
relational decision tree learner. 

dmuta(-A,-B) 
atom(A,-C,-D,27,-E) ?  
+--yes: atom(A,-F,-G,35,-H) ?  
|       +--yes: [neg] 7.0 [[neg:6.0,pos:1.0]] 
|       +--no:  [pos] 67.0 [[neg:5.0,pos:62.0]] 
+--no:  atom(A,-I,-J,29,-K) ?  
        +--yes: atom(A,-L,-M,1,-N) ?  
        |       +--yes: atom(A,-O,-P,10,-Q) ?  
        |       |       +--yes: [pos] 3.0 [[neg:0.0,pos:3.0]] 
        |       |       +--no:  [neg] 8.0 [[neg:6.0,pos:2.0]] 
        |       +--no:  [pos] 30.0 [[neg:5.0,pos:25.0]] 
        +--no:  atom(A,-R,-S,52,-T) ?  
                +--yes: [pos] 2.0 [[neg:0.0,pos:2.0]] 
                +--no:  [neg] 52.0 [[neg:33.0,pos:19.0]] 
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Finally we conclude that would be useful to integrate multi-relational 
learners into MSSQL and we are proposing to implement such kind of algorithm 
to deal with relational DM and to achieve database mining integration. 
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