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Abstract 

Time Series (TS) analysis based on autoregressive tree models has been 
introduced in Meek et al. (2002). In addition to features present in the original 
design, the current SQL 2005 implementation also addressed the “forecasting 
instability” phenomenon that has been observed on a range of highly non-
stationary and/or non-linear data sets. 
     In technical terms the cases of long range forecasting instability are 
characterized by rapid growth of the mean absolute prediction error with time, 
which may or may not be accompanied by significant growth of the predicted 
standard deviation. In practice, the cases of instability where predicted standard 
deviation stays tame are especially misleading, since they can furnish unreliable 
predictions with little or no visual cues that would characterize them as 
unreliable. 
     The method described in this paper is designed to detect and control the long 
range forecasting instabilities and to cull the unreliable predictions. 
Keywords: time series, forecasting, autoregression, stability, data mining. 

1 Autoregressive tree (ART) models 

Consider historic time series data for multiple time series. For each target 
(predictable) series, we build autoregressive tree model, which is effectively a 
collection of autoregressive models [2] and where the boundaries between the 
applicable models are defined by binary decision trees (see subsection 2.1 of the 
research paper [1] for detailed definition and examples of ART models).   
     When underlying decision tree for a target time series Y consists of more than 
one leaf node, then each of its interior nodes is defined by an input variable V  
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and a threshold h: subtrees below the interior node are defined by V h<  and 
V h> or V h≥   conditions. A section of such decision tree might look like this 

 

Figure 1: A section of an autoregressive tree. 

     We say that an interior node represents a split and we call the branching 
condition of the node a split condition. We also often refer to the variable and the 
threshold of that condition as split variable and split threshold. (E.g. the diagram 
above shows two interior nodes – one representing a split on 2tX −  and the other 
representing a split on 1tX − ). 
     The depth of an ART model is the maximum time lag appearing in all the 
constituent leaf AR models and in all the split conditions. Given an ART model 
of depth p , it suffices to have a history of depth p  for all the input time series’ 
in order to make one-step forecast for all the output time series. 
     Indeed, given history of that depth, every split condition in every decision tree 
resolves to either true or false and therefore we end up with a single prediction 
leaf, i.e. with a specific AR model of depth at most p, for each target series. We 
have enough input values to seed all the AR models we have selected and thus to 
obtain the predict distribution 1tY +  for each target time series Y. 
     The current version of ART analyzer uses the time index as an input variable 
in addition to time series inputs. Therefore, the ART decision trees often have 
splits on time in addition to splits on input series. So while the original design [1] 
addressed the non-linearity of data by approximating data with a set of 
piecewise-linear models, the current version also addresses the non-stationarity 
by making the models piecewise-stationary. 
     As per the autoregressions used, ART puts an emphasis on the quality of the 
first forecasting step (as would any other modeling technique based on classical 
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autoregressions). Indeed, an ART model optimizes the Bayesian score of a 
collection of distributions that have the form  

),...,,....,,...,|( ,,11,1,1 ptrpttrtt XXXXYp −−−−  
The multi-step joint distributions such as 

),...,,....,,...,|,....,( ,,11,1,1 ptrpttrttkt XXXXYYp −−−−+  
are not directly learned from data and have to be emulated by way of Monte-
Carlo process called forward sampling, that is described in the next section. 
     The one-step forecasting with ART models has been found superior compared 
to other general-purpose AR methods (see the evaluation section in [1]). It turns 
out that multi-step forecasting using AR models has a complication, to which 
ART is not immune either, which is the sampling instability phenomenon, 
explored in detail in sections 2, 3, 4. 

2 Long range forecasting based on forward sampling and the 
instability phenomenon 

As explained in the previous section, ART structures model piece-wise 
stationary, piece-wise linear data well. When the data is strongly non-stationary, 
the trees tend to have “splits on time” in order to capture the change in statistical 
patterns of the data over time.  
     Let us assume that the most recent such time split occurred sT time units in 
the past. In absence of seasonality lags only patterns recorded after that split will 
be used in forward prediction. For a long range forecast we commit to the 
assumption that the applicable past data patterns (such as patterns recorded up to 

sT  steps into the past) will persist into the future. Forecasting by forward 
sampling process described in this section does not introduce new splits and does 
not, in itself, have any other mechanisms for controlling inherent prediction non-
stationarity. 
     Here is the outline of the forward sampling algorithm for forecasting. (This 
approach explored in [1] can be viewed as a “continuous” analog of discrete 
Bayesian sampling introduced in [3].) 
     Let 1,..., mY Y  be a set of time series’ with histories available up to the moment 
of time t  and let M be an ART model describing this set of series’ based on the 
available history. Straight from this model we can generate distributions for 
predicted future values  
     1[ 1],..., [ 1]mY t Y t+ + . We cannot immediately do the same for the future time 
point 2t + , since in general that would require knowledge of values 

1, 1 , 1,...,t m ty y+ +  to be used as inputs into the model. 
     The process of forecasting over the range of time [ 1,..., ]t t k+ +  involves a 
sufficiently large number N  of sampling iterations. 
     At each iteration we build a sequence of sampled vectors 
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},...,{ *
1,

*
1,1 ++ tmt yy  

……………… 

},...,{ *
,

*
,1 itmit yy ++  

To build the first of these vectors we obtain the predict distributions 
1[ 1],..., [ 1]mY t Y t+ +  from the model using the actual historical data as input, then 

draw },...,{ *
1,

*
1,1 ++ tmt yy  as samples from these distributions. We can now extend 

the series’ with these values to get * *
1 1, 1 , 1{ },..., { }t m m tY y Y y+ ++ + curves to be used 

as inputs in further sampling steps. 
In general,  at step ,1i i k≤ < , assuming we have already generated  the extended 
series * * * *

1 1, 1 1, , 1 ,{ ,..., },..., { ,..., }t t i m m t m t iY y y Y y y+ + + ++ +  we obtain predict distributions 

1[ 1],..., [ 1]mY t i Y t i+ + + +  using these extended series as the input to the model, 
then we draw the new values * *

1, 1 , 1{ ,..., }t i m t iy y+ + + + as samples from these 
distributions and append them to the extended series’. 
     After performing N full sampling iterations we have N  emulated future 
values for each series rY  at each future point ,0t i i k+ < ≤ . Using these 
emulated future values we can compute estimated joint distributions for 
sequences of predicted values (for each i k≤ ). 
     Depending on the properties of the ART model and of the data it represents, 
the forecasting process as described above can be asymptotically stable, 
practically stable or unstable. 
     In the context of ART forward sampling these notions are similar to the 
notion of stability of solutions of stochastic differential equations [6, 7]. The 
principal question to ask is: what happens to the forecast when we apply a 
sufficiently small perturbation to the original time series data? 
     When any small data perturbation can cause forecasting difference that would 
persistently grow with time, we characterize the predictions as unstable. 
     In general, such predictions are unreliable, because, looking at a resulting 
volatile behavior we have no way of knowing whether the prediction volatility is 
an accurate reflection of the inherent volatility of data, or it is rather due to 
problems with the forecasting process. 

2.1 Example 

Shown below in Figure 2 is a synthetic curve, where an exponential growth 
pattern gives way to a flat line in the end. Despite the change in pattern there are 
stationary AR formulas with near-maximum likelihood that appear to model long 
range prediction well. Let us compare the behavior of the second-order AR 
formula 

 1 20.308 1.762* 0.779*t t tY Y Y− −= + −  
and this third-order AR: 

  1 2 30.33 1.762* 0.54* 0.24*t t t tY Y Y Y− − −= + − −  
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     In the absence of noise, both models seem to commit nicely to the flat pattern 
in the end of the data. However when noise is added, to a tune of 2% of the 
signal, to the original data, the prediction curves deviate from the ideal to various 
extent. It is easy to emulate 20-step forward noisy prediction with either formula. 
When done with the 2nd order AR the forecast mean deviates from the ideal 
prediction by a maximum of 0.82 around the 10th step then starts converging 
with the difference shrinking to 0.4 by the 20th step. With 3rd order AR the 
difference grows to approximately 2.45 towards 15th step and then stays at that 
general level. It is clear that here the effect of noise is much more dramatic and 
the stability of the 3rd order AR is questionable. 
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Figure 2: Noise-free data for Y. 

     In this patently simple example with one time series and no splits the stability 
analysis can be done analytically without running the actual predictions. But in 
really rich ART models the analytical method does not seem to be promising. 

3 Forecasting stability analysis 

The method we use for monitoring stability of long range forecasting is based on 
exploring the divergence rate of the forward-sampling operator.  
     Expanding on the description of forward sampling given in the previous 
section, let us introduce a shorthand notation  t iZ +  for the whole subsequence of 
sample values 

},...,{ *
1,

*
1,1 ++ tmt yy  

……………… 

},...,{ *
,

*
,1 itmit yy ++  

accumulated towards future time point it + . 
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     Let us view the next sample * * *
1 1, 1 , 1{ ,..., }t i t i m t iY y y+ + + + + +=  as a result of 

application of a forward sampling operator  iFS  to t iZ +  
     We need to explore the behavior of this hypothetical operator between 
different forward sampling iterations. Suppose a  and b  are labels of two such 
iterations, ,a t iZ +  and ,b t iZ + are the respective forward sampling collections at the 

point of time t i+  and *
, 1a t iY + + , *

, 1b t iY + +  are the respective further samples. 

     Assume for the moment that itaZ +, is fixed and itbZ +, is being generated 

synthetically multiple times to be very close to itaZ +, . Then we could define 
* *
, 1 , 1

, , ,
0

( , )
( | ) max( | ( , ) )lim a t i b t i

i a t i a t i b t i

dist Y Y
Norm FS Z dist Z Z

ε
ε

ε
+ + + +

+ + +
→

= =  

and 
  ( )iNorm FS =max ,( | )i a t iNorm FS Z +  

     The norm, thus defined, measures the rate at which the operator iFS  can 
amplify the mispredictions accumulated by the point of time it + . 
     If ( ) 1iNorm FS <  then sufficiently small mispredictions are dampened, not 
amplified at the i-th step. As long as ( ) 1iNorm FS <  we can have a stable 
forward sampling process for these values of i. 
     The norm, as defined above, is largely a theoretical measure, which would be 
not practical to compute in a real world computer application, should it even be 
algorithmically possible. So in practice we use empirical values called 
divergence rates, that are inspired by the norm but give a coarser measure of 
stability.  
     Consider the set Iter Iter×  of pairs of forward sampling iterations. Let S  be 
a large enough subset of Iter Iter×  not containing any pairs of the form (a,a). 
(At maximum S could be the entire \Iter Iter diagonal× .)  For each ki ,...,1=  
then consider the mean inter-sample distance 

* * 2
, 1 , 1

( , ) 1/ 2
,

( , )
( )

| |

a t i b t i
a b S

i S

dist Y Y
d

S

+ + + +
∈=
∑

 

     Now define divergence rate at point t i+  to be 1, ,i S i S
d d+ . This number 

gauges the expected growth of mean inter-sample distance from step to step. If 
this growth rate is significantly greater than 1, we should expect any 
misprediction at step t i+  to translate into a larger misprediction at step 1t i+ + . 
If the mean divergence rate stays significantly greater than 1 for sufficiently 
large number of consecutive steps, then it casts doubt on the stability, and 
reliability of the predictions. 
     The fine art of using the divergence rates depends on good answers to these 
three questions: 
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- What is a good support subset S  in Iter Iter×  to compute these 
numbers with? 

- What does “significantly greater than 1” mean? 
- What is “sufficiently large number of consecutive steps” after which we 

should pronounce the forward sampling process practically unstable? 
The support subset S  turns out to be a major tuning factor for the algorithm. 
The general idea is to select such pairs of iterations ( , )a b  where ,a t iZ +  and  

,b t iZ +  are sufficiently close to each other. The closeness is a relative measure, of 
course, and a good scale against which it can be defined is provided by the 
covariances of predict distributions up to the time step it + . For example, when 
Y consists of just one (scalar) time series,  the geometric mean of standard 
deviations of predict distributions [ ]aY t i+  and [ ]bY t i+  provides a good 
measuring scale which means, in practice, that the correlation coefficient of these 
two distributions would be a good measure of closeness. 
     Let us address the second question. 
First consider an ART model that does not have splits for any of the targets 
(effectively, a collection of AR models). For such, a divergence rate (d.r.) of 
greater than 1 at any point means that the quality of the prediction at the next 
step is likely to decline. It depends on the length of forecasting range and on the 
user quality requirements, whether this can be tolerated for a certain number of 
steps.  In our experience, the d.r. >1.5 at the very first step meant in most cases 
that the model is going to be invalid for further forecasting. D.r. between 1 and 
1.5 was more like a market alert – it made sense to try further forecasting steps in 
hope that the rate would eventually drop.  
     In case the model is a proper ART with a number of spits, the use of d.r. is 
more complicated at threshold points, however we skip the detailed discussion of 
it due to lack of space.  
     Now we can turn to the third question, namely: for how many steps should we 
tolerate a high divergence rate? Given the non-linear non-stationary character of 
rich ART models, the divergence rate can go up and down from one forecasting 
step to another. If a maximum overall error amplification rate maxA  is set for 
practical purposes then it is prudent to stop the forecast at a step where the 
running product of divergence rates exceeds maxA . 

4 Real world examples 

4.1 Mega millions lottery 

Let us try and predict US Mega Millions lottery winning picks. To this end we 
can download the history of winning numbers from 
http://megamillions.com/winningpicks/download_numbers.asp from, say, 
January 2005. The lottery is the usual “guess 6” setup: 5 regular numbers and a 
“Mega Ball” are drawn from 1 through 55.  
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     At certain parameter settings we get a TS model with the following subset of 
relevant leaves: 
Mega Ball: (Unconditional): Mega Ball = 24.42, variance  < 1.0 
Pick1:(if Pick5(t-3) > 51 and Pick3(t-1) < 22)  
Pick1 = -49.56+0.97*Pick5(t-3) +0.17*Pick3(t-1), variance 9.59 
Pick2: (Unconditional) Pick2 = 18.23, variance < 1.0 
Pick3: (if Pick5(t-3) > 44)  
Pick3 = 29.62+0.02*Pick5(t-3), variance 132.95 
Pick4: (if Date > 3/12/2005) Pick4 = 37.45, variance < 1.0 
Pick5: (if Pick2(t-5) < 16 and Date > 6/19/2005) 
Pick5 = 54 – 0.22*Pick5(t-5)+0.72*Pick2(t-5), variance 21.18 
 
     Since lottery picks are certifiably random, this model can not possibly work. 
So what kind of telling signs should we be looking for? Huge variance in the AR 
for Pick3 is one such sign, but an even stronger one is the model divergence rate 
(d.r.) of 1.88 at the first prediction step, which is way more than the most 
generous empirical cap of d.r.=1.5. 

4.2 High-complexity “Economy Indicators” model 

Consider a 10-year history of monthly key economic indices, such as a cleaned 
up snapshot of data available at http://www.economagic.com/popular.htm . In 
this experiment the list of indices included “Discount rate”, “Federal Funds rate”, 
“Single family housing starts”, “Multiunit housing starts”, “New construction 
total”, “Industrial Production Index”, “30 Year Fixed mortgage rate”, “New 
computers production”, “New defence orders”, “New durable goods production”, 
“New motor vehicles production”, “New power production”, “Per-capita 
income”, “Bank prime loan rate”, “Treasury bill interest rates”, “Unemployment 
rate”, “Yen to US dollar exchange rate” plus three dozen more of similar 
measures. 
     A parameter setting of the algorithm adjusts the complexity of autoregressive 
trees, which leads to initial ART model M1, that is high branched with the total 
of 156 leaves across the 55 target trees and on average 6.5 regressors per leaf. It 
turns out that such high complexity is not good for the forecasting stability. For 
the first 4 prediction steps the divergence rates amount to 1.54, 2.66, 9.17 and 
19.99, indicating an unreliable forecast.  
     Adjusting parameters of the method leads to a more robust model M2 with 
about 105 leaves across 55 target trees that average 4.7 regressor per leaf. The 
first 4 divergence rates go down to 1.02, 1.175, 1.12 and 1.05, which spells 
moderate and practically acceptable error amplification potential. (See also a 
discussion of this data set in [4].) 
     Table 1 below presents an essential trade-off comparison between the two 
models using a held out a 6-point portion of each of the listed. The score 
columns contain the average prediction log-likelihoods computed using the 
holdout points. (At 7th step predictions with M1 were becoming severely 
impaired: e.g., predict means for “Discount Rate” were 2.77, 3.23, 2.13, 3.64, 
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3.07, -2.13, +20.94).  The StdDev columns list the average predict standard 
deviation over the 6 predictions. 

Table 1:  Selected comparative uncertainties and scores for models M1 and 
M2. 

 

     The bottom line of this comparison is that the somewhat coarser model M2 
has good short-range predictive quality comparable to that M1 (better score on 9 
and worse on 6 of the above listed targets). M2 however has a huge advantage of 
producing stable long-range forecasts. 

5 Conclusion and further research 

The forecasting stability analysis method described in this paper is designed to 
flag unreliable predictions that can occur in AR and ART models due to 
instability of the forward-sampling process. Expanding this method to Time 
Series models of other types would be an important direction of further research, 
as it should improve our understanding of the value and usability of Time Series 
forecasts. 
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