
An efficient Bayesian network approach for 
discovering interesting patterns  

R. Malhas & Z. Al Aghbari 
Department of Computer Science, University of Sharjah, UAE 

Abstract 

The main problem faced by all association rule/pattern mining algorithms is their 
production of a large number of rules which incurred a secondary mining 
problem; namely, mining interesting association rules/patterns. The problem is 
compounded by the fact that ‘common knowledge’ discovered rules are not 
interesting, but they are usually strong rules with high support and confidence 
levels – the classical measures. 
 In this paper, we present an efficient algorithm for discovering interesting 
(unexpected) patterns based on background knowledge, represented by a 
Bayesian network. A pattern/rule is unexpected if it is ‘surprising’ to the user. 
The algorithm profiles a pattern as interesting (unexpected), if the absolute 
difference between its support estimated from the dataset and the Bayesian 
network exceeds a user specified threshold (ε). Itemsets with the highest 
diverging supports are considered the most interesting. The efficiency of the Java 
implementation of the algorithm is verified experimentally.  
Keywords:  interesting patterns, association rules, frequent itemsets, Bayesian 
network, background knowledge. 

1 Introduction 

Since the inception of the classical Apriori algorithm [1] for mining association 
rules, development of interestingness measures has been a vigilant area of 
research to mine interesting patterns out of a sheer volume of obvious and 
irrelevant rules. The problem is compounded since obvious ‘common 
knowledge’ discovered rules are not interesting, but they are usually strong rules 
with high support and confidence levels - the classical measures in [1]. 
 In this paper, we present an efficient algorithm that discovers 
interesting/unexpected patterns based on background knowledge, represented by 

Data Mining VII: Data, Text and Web Mining and their Business Applications  103

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 
doi:10.2495/DATA060111



a Bayesian network. The algorithm adopts a definition of interestingness 
proposed and implemented in [2], where a pattern (itemset) is considered 
interesting if the absolute difference between its support estimated from the 
dataset and the Bayesian network exceeds a user specified threshold (ε). Patterns 
with the highest diverging supports are considered the most interesting. For 
short, it is called the diverging supports definition. Our algorithm differs from 
[2] in the way it computes the support (joint probability) of a pattern from the 
Bayesian network, which is known to be computationally hard. The efficiency of 
the Java implementation of the algorithm is verified experimentally.  

2 Related work and motivation 

As the focus of this paper is on discovering interesting patterns based on 
background knowledge, only related work within this context is discussed. Three 
main approaches that use background knowledge in their discovery schemes 
were identified: 1) syntactic based as in [3–6]; 2) logic based as in [7, 8]; and 3) 
probabilistic based as in [2, 9–11].  
 Syntactic based approaches necessitate defining some kind of language for 
knowledge representation governed by a set of syntax rules, so that pair wise rule 
comparisons are conducted; one from the set of knowledge rules and the other 
from the data rules. If a syntax difference is captured- i.e. a similar rule body but 
a dissimilar rule head or vice versa- a data rule is considered interesting.   
 Logic based approaches are similar to the syntactic based ones because both 
adopt pair wise rule comparisons; but they look for logical contradictions instead 
of syntax differences between prior knowledge rules and data rules. 
 Probabilistic based approaches use belief systems for background 
knowledge representation, to be able to introduce uncertainty through assigning 
some degree or confidence factor to each belief. Although the authors of [9, 10] 
laid the ground for using a Bayesian or a Dempster-Shafer approach (reasoning 
under uncertainty), their later algorithms in [7, 8] leveraged logical reasoning 
based on the user’s precise (certain) knowledge! Two recent papers, [2] and 
[11], were the first to pick what was seeded in [7, 8] by adopting a discovery 
scheme that used a Bayesian network to represent background knowledge. But 
they adopted a different measure of interestingness. 
 In [9, 10], the proposed definition of interestingness should measure how 
much a pattern affects the degrees of the beliefs in a belief system; i.e. the more a 
pattern disagrees with the belief system the more unexpected and hence the more 
interesting it is.  No formal algorithm was proposed in either paper.  
 Alternatively, the approaches in [2, 11] adopt the diverging supports 
measure that was mentioned in the introduction (and formally presented in 
section 3). The major concern of both papers is the computation of the support 
(joint probability) of patterns from the Bayesian network, which is known to be a 
computationally hard problem. In [2], the approach uses the bucket elimination 
algorithm [12] only to compute the joint probability distributions of supersets of 
frequent itemsets discovered. It then marginalizes this distribution to get the joint 
probability distribution of smaller ones (i.e. joint probability distributions for the 

104  Data Mining VII: Data, Text and Web Mining and their Business Applications

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 



subsets are derived from the joint probability distributions of their supersets).  
Thus, achieving a reduction in the number of times the, relatively costly, bucket 
elimination algorithm is called when the number of frequent itemsets is very 
large.  However, for relatively smaller numbers of frequent itemsets, the 
feasibility of the algorithm becomes questionable, because the cost incurred due 
to computing the joint probability distributions for supersets might be higher 
than directly computing the joint probability for each frequent itemset.  
 In [11], the approach leverages a sequential sampling algorithm which 
approximates the computation of the joint probabilities from the Bayesian 
network to avoid exact inference adopted in [2]. This approach is a good 
alternative to [2] for very large databases or nets, because it works with a sample 
drawn from the database to get away from processing the entire database to 
discover the most interesting patterns. Nevertheless, as with any sampling 
approach, the risk of missing the most interesting pattern will always be there.  
 The work in [2, 11] has motivated the work in this paper in a reversed 
manner. We have implemented the diverging supports definition of 
interestingness, using Java, by directly computing the joint probability for each 
pattern from the Bayesian network to cater for the cases where a direct method 
might be more feasible. As for future work, we plan to develop an inference 
optimizer algorithm that profiles the database and the Bayesian network on hand 
– with respect to the number of attributes, domain size, user specified parameters 
etc – to choose the most feasible inference approach out of the three. 

3 Definitions and notation 

Using database notation: 
� Let A1, A2, A3, ..., Ai be the attributes of a dataset. The domain of an attribute Ak 

is donated by Dom(Ak). Only categorical and discrete attributes with finite 
domains are considered. 
� Let I, J, k,… … (uppercase letters) be the  attribute sets,  where  an  attribute 

set   I=A1, A2, A3,..., Ak or I={A1, A2, A3,..., Ak}. The domain of an attribute set I 
is: Dom(I)=Dom(A1) × Dom(A2) × ... × Dom(Ak).  
� Let i,j,... (lowercase letters) be the values from the domains of attributes and 

attribute sets, where i∈Dom(I) is a value from the domain of the attribute set I. 
� PI denote the joint probability of the attribute set I, where PI(i)=Pr(I=i) is the 

probability that I=i. Noting that  ∑i∈Dom(I) PI = 1. 
� Let the pair (I,i) be an itemset, where I is an attribute set and i∈Dom(I). 
� The support of an itemset (I,i) in a dataset is defined as  

                   suppData(I,i) = )(iPI .                                      (1) 
(I,i) is frequent if its support ≥ minSupport; a user specified minimum support. 
� Let BN be a Bayesian network over a set of attributes H = A1, A2, ...,An.  The 

BN is a directed acyclic graph, BN = (V,E), with the set of vertices  V = 
VA1,VA2,...,VAn, and a set of edges E ⊂ V × V. Each vertex VA has a conditional 
probability distribution

ii parAP | , where pari ={Aj : (VAj, VAi)∈E} is the set of 
attributes corresponding to the parents of VAi. 

Data Mining VII: Data, Text and Web Mining and their Business Applications  105

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 



� A Bayesian network BN over H encodes a joint probability distribution (JPD) 
of H represented by  

                                                     ∏
=

=
n

i
parA

BN
H ii

PP
1

| .                                      (2) 

� The support of an itemset (I,i) in a Bayesian network BN is defined as  
                                                 suppBN(I,i) = )(iP BN

I .                                       (3) 
where the probability is estimated from the JPD encoded in the BN. An itemset 
is frequent if its support ≥ minSupport; a user specified minimum support. 

3.1 Diverging supports definition of interestingness 

This section presents the diverging supports definition formally. 

3.1.1 Interestingness of an itemset relative to a Bayesian network 
Let BN be a Bayesian network over an attribute set H, and let the pair (I,i) be an 
itemset, such that I ⊆ H and i∈Dom(I). An itemset is considered interesting if the 
absolute difference between its support estimated from the dataset and the BN 
exceeds a user specified threshold ε. Thus, the interestingness of an itemset (I,i) 
relative to  the Bayesian network BN is given by [2] 
                              ΙBN(I,i) = |suppData(I,i) – suppBN(I,i)|,                              (4) 
where suppData(I,i) is the support of the itemset in the dataset as defined in     
eqn- 1;  and suppBN(I,i) is the support (i.e. joint probability) of the itemset 
relative to the Bayesian network BN as defined in eqn-3.   

3.1.2 Interestingness of an attribute set relative to a Bayesian network 
The qualitative structural assumptions pertaining to the dependencies among the 
nodes of a BN are modeled using attributes not itemsets; hence, we agree with 
[2] that it would be logical to think in terms of discovering interesting attribute 
sets rather than interesting itemsets. The interestingness of an attribute set 
relative to a Bayesian network is given by [2] 
                                    IBN(I) = maxi∈Dom(I) IBN(I,i).                                     (5) 
 Attribute sets with the highest interestingness scores are deemed interesting.  
A user specified threshold ε can be used to prune attribute sets with IBN(I)<ε. 

4 Implementation and algorithms 

The PatternMiner Java class (Algorithm-1) utilizes BNs in two ways: as a 
causality/dependence representation of all attributes in the user’s preliminary set 
of beliefs (background knowledge); and as a probabilistic inference engine. 
PatternMiner adopts the diverging supports interestingness measure presented in 
sections 3.1 and 3.2.  PatternMiner relies extensively on the use of hashtables 
and caching to prevent dual computation of support values/joint probabilities.  

106  Data Mining VII: Data, Text and Web Mining and their Business Applications

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 



 Calculating the joint probability of an itemset from a BN is known to be 
computationally hard. NeticaJ, a Java API of Netica  (an application for belief 
networks), is used to calculate the support (joint probability) of a pattern. Hence, 
PatternMiner differs from [2] in two ways: It directly computes the joint 
probability for each and every frequent itemset instead of supersets of sets in the 
positive border; and it uses the join tree algorithm [13] for the joint probability 
(support) computation through Netica’s getFindingsProbability() method instead 
of the bucket elimination algorithm [12].   
 
Algorithm-1: PatternMiner 
Input: A BN, a user specified minSupport and interestingness threshold ε 
Output: Interesting attribute sets. 
1. Find the frequent itemsets LData={(I,i)} in the dataset using Apriori. 
2. Find the frequent itemsets LBN={(J,j)} in the BN using AprioriBND. 
3. Let L∩ = { LData ∩ LBN } 
4. Compute the support of LBN (i.e. suppData(J,j)) from the dataset using 
5.                                                                           computeSupportData 
6. Compute the support of LData (i.e. suppBN(I,i)) from the BN using  
7.                                                                   computeSupportBN 
8. L = { LData ∪ LBN}- L∩ , i.e. (I,i)={ (I,i) ∪ (J,j)- L∩ : I≠J }) 
9. Compute ΙBN(I,i) = |suppData(I,i) – suppBN(I,i)| for all (I,i)∈L 
10. Prune from ΙBN(I,i) itemsets {(I,i) : ΙBN(I,i) < ε} 
11. Compute  IBN(I) = max{IBN(I,i) : (I,i) ∈ L, i∈Dom(I)} 
12. Prune from ΙBN(I) attribute sets {I : ΙBN(I) < ε} 
13. Output top interesting attribute sets sorted by interestingness scores ΙBN(I) 
 
 PatternMiner takes as input the BN representing the background knowledge, 
which is learned from the dataset. It starts by finding the frequent itemsets in the 
dataset and the BN using a classical Apriori and AprioriBND (Algorithm-2), 
respectively. AprioriBND (D stands for Direct) is similar to the AprioriBN 
algorithm proposed in [2], but differs in the support computation of an itemset.  
 In step-4, frequent itemsets found in the BN (LBN) are passed to 
computeSupportData (Algorithm-3) to compute their support in the dataset. 
Likewise, in step-6, frequent itemsets found in the dataset (LData) are passed to 
computeSupportBN (Algorithm-4) to compute their support in the BN.  To 
enhance performance, computeSupportData (in step-3) and computeSupportBN 
(in step-4) were allowed to search hashtables of cached support values 
constructed during execution of Apriori and AprioriBND, to avoid dual 
computation of support values of common frequent itemsets (LData ∩ LBN).   
 Frequent itemsets in the dataset and the BN are merged in step-8 of 
Algorithm-1, before computing their interestingness scores in step-9. Only 
itemsets with an interestingness score ≥ ε are qualified to enter the competition 
for finding the attribute set with the maximum interestingness score in step-11.  

Data Mining VII: Data, Text and Web Mining and their Business Applications  107

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 



Finally, PatternMiner sorts the attribute sets by their interestingness scores after 
pruning those < ε. Top ranked attribute sets are considered the most interesting. 
Algorithm-2: AprioriBND 
Input: BN and minSupport. 
Output: Frequent itemsets LBN={(J,j)} whose suppBN(J,j) ≥ minSupport; and 
hashtableBN for LBN={(J,j)} containing respective suppBN(J,j)  
 1. L0=φ ; k = 1   
 2. C1={(J,j):|J|=1}   
 3. Compute the support suppBN(J,j) for all (J,j)∈C1 using  
 4.    getFindingsProbability() of Netica 
 5. Prune from C1 itemsets {(J,j): suppBN(J,j) < minSupport} 
 6. while Ck ≠φ   
 7.  Lk = {(J,j)∈ Ck}   
 8.  Generate new candidate set Ck+1 by using Lk   
 9.  Compute the support suppBN(J,j) for all (J,j) ∈ Ck+1 using 
10.                                             getFindingsProbability() of Netica 
11. Prune from Ck+1 itemsets {(J,j) : suppBN(J,j) < minSupport}   
12.  k=k+1   
13. LBN = ∪k Lk  
14. Construct hashtableBN for LBN={(J,j)} containing respective suppBN(J,j)  
 
Algorithm-3: ComputeSupportData 
Input: LBN={(J,j)}, L∩ and hashtableData , constructed by the classical Apriori, for 
LData={(I,i)}, which contains  suppData(I,i) 
Output: suppData(LBN={(J,j)}) and cachedSuppBN(L∩ )  
 1. while LBN ≠φ   
 2.  (J,j) = an itemset from LBN 
 3. if  (J,j) ∈ hashtableData(LData= {(I,i)}) /* i.e. (J,j) ∈ L∩  */ 
 4.   suppData(J,j) = suppData(I,i)  from hashtableData : (J,j) = (I,i) 
 5.  Cach suppBN(J,j) in cachedSuppBN(L∩ )  
 6. else  /*  (J,j) ∉ L∩  */ 
 7.  Calculate suppData(J,j) through a complete pass over the dataset 
  
Algorithm-4: ComputeSupportBN 
Input: Frequent itemsets LData={(I,i)}, L∩ , hashtableBN  and cachedSuppBN(L∩ )  
Output: suppBN(LData={(I,i)})   
 1. Prune from hashtableBN entries ∉ cachedSuppBN(L∩ )  
 2. while LData ≠φ   
 3.  (I,i) = an itemset from LData 

 4. if  (I,i) ∈ hashtableBN(L∩ ) /* i.e. (I,i) ∈ L∩  */ 
 5.   suppBN(I,i) = suppBN(J,j)  from hashtableBN : (I,i) = (J,j) 
 6. else  /*  (I.i) ∉ L∩  */ 
 7.  Enter (I,i) to the BN as findings using enterFinding() of Netica 
 8.  Calculate suppBN(I,i) using getFindingsProbability() of Netica 
 The computational complexity of PatternMiner is governed by:  

108  Data Mining VII: Data, Text and Web Mining and their Business Applications

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 



� The number of frequent itemsets |L| generated by the Apriori and 
AprioriBND, which is highly governed by the user specified minSupport 
parameter and the maximum size (maxk) allowed for an itemset/attribute set; 
i.e. the number of items/attributes within a pattern. 

� The size of the Bayesian network, i.e. the number of nodes N in the net. 
� The size of the dataset. 

 The time and space complexity of the join tree algorithm is exponential in 
the worst case (so is the bucket elimination algorithm, according to [12]). Hence, 
the most costly part of PatternMiner is getFindingsProbability(); it is called in 
step-9 of AprioriBND for every frequent itemset (J,j) ∈ LBN; and in step-8 of 
ComputeSupportBN for every frequent itemset {(I,i) : (I,i)∈LData, (I,i)∉L∩}. This 
cost escalates with large values of |L| and N; but with |L| being the major 
overhead even for small values of N. For this reason, the minSupport parameter 
should be specified wisely so as not to explode the number of frequent itemsets 
worthlessly. Experimenting with different minSupport values witnessed a vast 
reduction in computation time (reaching 92.0%!) when minSupport was 
increased, and the same top most interesting patterns were still discovered. 

Table 1:  Time performance of PatternMiner and the marginalization 
algorithm. 

Dataset Max minSupp ε PatternMiner Java Class Marginalization Alg.  

  Size     
#Joint 
 dist 

Time 
[s] 

Max 
IBN 

#Joint 
 dist 

Time 
[s] 

Max  
IBN 

5 0.1 0.01 1228 0.21 0.032 - - - 

5 0.05 0.01 3309 0.62 0.032 - - - KSL   
(N=9)   
  5 0.01 0.01 13120 2.55 0.032 382 1.12 0.032 

5 0.1 0.01 1274 0.30 0.82 - - - 

5 0.05 0.01 3643 0.63 0.82 - - - 
Breast-
Cancer 
 (N=10) 
  5 0.01 0.01 27469 5.57 0.82 638 3.49 0.082 

3 0.1 0.067 13845 2.93 0.123 - - - 

3 0.067 0.067 24826 5.34 0.123 1160 29.12 0.123 

4 0.1 0.067 26161 7.40 0.126 - - - 

Lympho-
graphy 
( N=19) 
  
  4 0.067 0.067 53988 18.6 0.126 5036 106.1 0.126 

3 0.1 0.01 32845 13.7 0.028 - - - 

3 0.075 0.01 93969 57.6 0.028 - - - 

3 0.05 0.01 1521332 1540.7 0.036 - - - 
Splice 
(N=61) 

  
  3 0.01 0.01 - - - 37882 8456 0.036 

Data Mining VII: Data, Text and Web Mining and their Business Applications  109

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 



5 Performance evaluation 

The performance of PatternMiner is evaluated using four datasets used 
previously in [2]: the KSL dataset of Danish 70-year olds, Breast Cancer, 
Lymphography and Splice datasets.  The KSL dataset is distributed with the 
DEAL package, while the other three are from the UCI Machine Learning 
repository. The respective BNs for those datasets were thankfully provided by 
the authors of [2] to facilitate a smooth performance comparison. Table 1 below, 
presents the results obtained along with a comparison with the time performance 
of the algorithm in [2], which is referred to as the ‘marginalization algorithm’. 
 The ‘max size’ column indicates the user specified size limit of frequent 
itemsets generated by the AprioriBND and Apriori algorithms. The ‘minSupport’ 
column was allowed to vary for the same dataset, the same ‘max size’ and the 
same interestingness threshold ‘ε’, to show the great reduction in computation 
time achieved, with the same maximum interestingness values (max IBN) still 
discovered.  Naturally, the number of joint distributions (‘#Joint dist’ column) 
processed, and the computation time (‘Time[s]’ column), both depend on the 
respective ‘minSupport’ and ‘max size’ parameters specified. The ‘#Joint dist’ 
grows (and sometimes explodes) with low ‘minSupport’ values and large ‘max 
size’ values. The time reported in seconds does not include the execution of the 
Apriori algorithm (to comply with [2]), but it does include AprioriBND. 
 

0

1

2

3

4

5

6

7

8

9

13845 24826 35604

No. of Frequent Itemsets

T
im

e 
in

 s
ec

on
ds

Lymphography

 
Figure 1: Computation time of PatternMiner Vs. the number of frequent 

itemsets for the Lymphography dataset, N=19. 

Figure 1 shows how PatternMiner scales linearly, using the Lymphography 
dataset (19 attributes), against the growing number of frequent itemsets as a 
result of decreasing the ‘minSupport’ parameter (.1, .067 & .05). Unfortunately, 
such a linear behaviour is not guaranteed all the time, because there are many 
factors governing the computational complexity, which include the BN structure, 
no. of attributes, size of the domain, size of the dataset and the max size of the 
frequent itemsets. This is expected because PatternMiner leverages the join tree 
algorithm whose complexity is exponential in the worst case. Figure 2 below 

110  Data Mining VII: Data, Text and Web Mining and their Business Applications

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 



resembles such a case using the Splice dataset (61 attributes), where 
PatternMiner at first scales linearly for relatively smaller numbers of frequent 
itemsets, but exponentially for exploding numbers of frequent itemsets, as the 
‘minSupport’ parameter is decreased from 0.1 to .05 (refer to Table 1). 
 

0

200

400

600

800

1000

1200

1400

1600

32845 93969 1521332

No. of Frequent Itemsets

T
im

e 
in

 s
ec

on
ds

Splice

 

Figure 2: Computation time of PatternMiner Vs. the number of frequent 
itemsets for the Splice dataset, N=61. 

  For the Splice dataset, PatternMiner was able to produce a result for 
minSupport=.05 only when Java’s heap size was increased at run time. It 
computed 1,521,332 joint distributions in 1541 seconds as opposed to 8456 
seconds needed by the marginalization algorithm to compute 37,882 joint 
distributions; i.e. PatternMiner slashed the computation time by ~82% for a 
dataset of 61 attributes!  Such an excelling performance is ascertained by Figure 
3, where the computation time of PatternMiner is compared to the that of the 
marginalization algorithm, using the Lymphography dataset, for the same values 
of ‘max size’; noting that this value masks a large difference in the numbers of 
joint distributions each algorithm has to process. For example, for ‘max size’=4, 
PatternMiner has computed 53,988 joint distributions in 18.61 seconds as 
opposed to 5,036 joint distributions in 106.13 seconds by the marginalization 
algorithm. Thus, again a vast reduction in computation time was achieved 
reaching ~82% with the same maximum interestingness values still discovered!  
 However, the scalability of PatternMiner remains a concern. It couldn’t 
produce a result for the Splice dataset when minSupport=0.01 (refer to last row 
in Table 1); while the marginalization and approximation [11] algorithms could. 
Nevertheless, PatterMiner exhibited an excellent performance that outperformed 
not only the marginalization algorithm, but also the approximation algorithm as 
shown in Table 2 below; it consumed ~1541 seconds for the Splice dataset as 
opposed to 1795 seconds by the approximation algorithm.   

6 Conclusion 

An efficient Java algorithm, PatternMiner, was presented that discoveres 
interesting unexpected patterns based on background knowledge represented by 

Data Mining VII: Data, Text and Web Mining and their Business Applications  111

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 



a Bayesian network (BN). PatternMiner profiles a pattern as unexpected, if the 
absolute difference between the pattern’s support estimated from the dataset and 
the BN exceeds a user specified threshold. Patterns with the highest diverging 
supports are considered the most interesting. 
 

0

50

100

150

200

250

300

350

1 2 3 4 5

Max. size of Frequent Itemsets

T
im

e 
in

 se
co

nd
s

PatternMiner
Marginalization alg

 

Figure 3: Computation time of PatternMiner Vs. the marginalization 
algorithm, using the Lymphography dataset, N=19. 

Table 2:  Time performance of PatternMiner compared to the approximation 
algorithm. 

    Dataset 
 

N Max minSupp ε PatternMiner Approximation alg 

  
 

Size     
Time  

[s] 
Max 
IBN 

Time 
[s] 

Max  
IBN 

   KSL 
 
9 5 0.01 0.01 2.55 0.032 55 0.032 

3 0.067 0.067 5.34 0.123 43 0.099  Lympho-
graphy 

 
19 4 0.067 0.067 18.6 0.126 83 0.123 

3 0.05 0.01 1540.7 0.036 - - Splice  
  

 
61 3 0.01 0.01 - - 1795 0.036 

 
 Computing the support (joint probability) of a pattern from a BN is known 
to be computationally hard. PatternMiner adopted the joint tree algorithm for 
probabilistic inference using NeticaJ, a Java API of Netica.  For moderately-
sized datasets and BNs, PatternMiner has significantly outperformed other 
existing algorithms [2, 11] adopting the ‘diverging supports’ measure, where it 
was able to mark a slash in computation time reaching 82%. 
 As the scalability of PatternMiner remains a concern, it would be a 
worthwhile future direction to benefit from the more scalable approaches in [2, 
11] when needed, by equipping PatternMiner with an inference optimizer that 
profiles the BN and dataset on hand before choosing the most feasible inference 
approach out of the three. Implementing the algorithms in [2, 11] using Java is 
an important starting point to assess how much Java’s efficient environment can 
contribute to boosting their performance.  

112  Data Mining VII: Data, Text and Web Mining and their Business Applications

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 



Acknowledgement 

We would like to thank Szymon Jaroszewicz, one of the authors of [2, 11] for his 
feedback and provision of the nets used in [2], to facilitate a smooth comparison. 

References 

[1] Agrawal, R., Imielinski, T. & Swami, A., Mining association rules 
between sets of items in large databases.  Proc. ACM SIGMOD Conf. on 
Management of Data, pp. 207 216, 1993. 

[2] Jaroszewicz, S. &  Simovici, D., Interestingness of frequent itemsets using 
Bayesian networks as background knowledge.  In Proc. of the 2004 ACM 
SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining (KDD-
2004), pp. 178-186, 2004. 

[3] Chen. S., Hsu, W. & Liu., B., Using general impressions to analyze 
discovered classification rules.  In Proc. of the 3rd Int’l Conf. on 
Knowledge Discovery and Data Mining (KDD-1997), pp. 31, 1997. 

[4] Chen, S., Hsu, W., Liu, B. & Ma, Y., Analyzing the subjective 
interestingness of association rules. IEEE Intelligent Systems, v.5: pp. 47 
55, 2000. 

[5] Klemettinen, M., Mannila, H., Ronkainen, P. & Verkamo, A.I., Finding 
interesting rules from large sets of discovered association rules.  In Proc. 
of the 3rd  Int’l Conf. on Information & Knowledge Manag., pp. 401 407, 
1994. 

[6] Sahar, S., Interestingness via what is not interesting.  In the 5th Int’l Conf. 
on Knowledge Discovery and Data Mining, pp. 332 336, 1999. 

[7] Padmanabhan, B. & Tuzhilin, A., A belief-driven method for discovering 
unexpected patterns.  In Proc. of the 4th Int’l Conf. on Knowledge 
Discovery and Data Mining, 1998. 

[8] Padmanabhan, B. & Tuzhilin, A., Small is beautiful: Discovering the 
minimal set of unexpected patterns.  In Proc. of the 6th ACM SIGKDD 
Int’l Conf. on Knowledge Discovery and Data Mining, pp. 54 63, 2000. 

[9] Silberschatz, A. & Tuzhilin, A., On subjective measures of interestingness 
in knowledge discovery. knowledge Discovery & Data Mining, 1995. 

[10] Silberschatz, A. & Tuzhilin, A., What makes patterns interesting in 
knowledge discovery systems.  IEEE Trans.  In Knowledge and Data 
Engineering.  Special issue on Data Mining, v.5, no.6: pp. 970 974, 1996. 

[11] Jaroszewicz, S. &  Scheffer, T.,  Fast discovery of unexpected patterns in 
data, relative to a Bayesian network.  In Proc. Of the 2005 ACM SIGKDD 
Int’l Conf. on Knowledge Discovery and Data Mining (KDD-2005), 2005. 

[12] Dechter, R., Bucket elimination: A unifying framework for reasoning.  
Artificial Intelligence, v.113, no.1&2: pp. 41 85, 1999. 

[13] Cowell, R.G., Dawid, A.P., Lauritzen, S.L. & Spiegelhalter, D.J., 
Bayesian analysis in expert systems. Statistical Science, v.8, no.3: pp. 219 
283, 1993. 

Data Mining VII: Data, Text and Web Mining and their Business Applications  113

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 




