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Abstract 

The evaluation of classifiers is not an easy task. There are various ways of 
testing them and measures to estimate their performance. The great majority of 
these measures were defined for two-class problems and there is not a consensus 
about how to generalize them to multiclass problems. This paper proposes the 
extension of the F-measure and G-mean in the same fashion as carried out with 
the AUC. Some datasets with diverse characteristics are used to generate fuzzy 
classifiers and C4.5 trees. The most common evaluation metrics are implemented 
and they are compared in terms of their output values: the greater the response 
the more optimistic the measure. The results suggest that there are two          
well-behaved measures in opposite roles: one is always optimistic and the other 
always pessimistic. 
Keywords: classification, classifier evaluation, ROC graphs, AUC, F-measure, 
G-mean. 

1 Introduction 

Classification [1] is an important task in all knowledge fields. It consists of 
classifying elements described by a fixed set of attributes into one of a finite set 
of categories or classes. For example: to diagnose a disease of a person by his 
medical exams or to identify a potential customer of a product by his purchases. 
Several artificial intelligence approaches have been applied to this problem like 
artificial neural networks, decision trees and production rules systems. 
     In order to test a classifier or a methodology, a researcher may choose some 
techniques such as leave-one-out, hold-out, bootstrap and cross-validation. 
Kohavi [2] performed large-scale experiments to compare two of them, bootstrap 
and cross-validation, and concluded that 10-fold stratified cross-validation was 
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the best choice, even if computational power allows the use of more folds. This 
is the scheme employed on this research as detailed in the fourth section. 
     Along with the testing strategy, the performance evaluators play important 
role in classification task. The most popular is accuracy, which describes the 
ability of correctly classify new objects. It computes the ratio of correct decisions 
made by a classifier and it is easy to be obtained on all situations. Accuracy 
estimation assumes that all kinds of mistakes are of equal importance just as the 
benefits of the hits [3]. However, there are cases in which the accuracy 
estimation can be misled [4]. 
     One of them occurs in problems with imbalanced class distribution [5], in 
which accuracy tends to favor classifiers with low performance in the rare 
classes [6]. In real problems, there are many situations in which the cost of this 
kind of error is very relevant and has to be minimized, such as fraud detection 
and diseases diagnostics. 
     Therefore, alternative evaluation metrics should be employed and they are 
presented in the next section. The third section presents the extensions of some 
metrics to multi-class problems. Later, the experiments performed are detailed 
and the results analysis is exposed. In the last section, some concluding remarks 
and suggestions of future research are done. 

2 Classifier performance evaluators 

Before presenting the metrics, it is relevant to point that they were defined to 
two-class problems and they are based on confusion matrix, a tool which informs 
the sorts of hits and errors made by a classifier. The classes are named positive 
and negative and the confusion matrix has four values computed in terms of real 
and predicted classes, namely: 
 

D TP (true positives): the amount of positive elements predicted as positive; 
D FP (false positives): the amount of negative elements predicted as 

positive; 
D FN (false negatives): the amount of positive elements predicted as 

negative; 
D TN (true negatives): the amount of negative elements predicted as 

negative; 
 
     The most common performance evaluators are: 
 

1. accuracy: it is the ratio of correct decisions made by a classifier 

     
TNFNFPTP

TNTPacc
+++

+
=                                        (1) 

2. sensitivity: also called hit rate or recall, it measures how much a classifier 
can recognize positive examples 

     
FNTP

TPsens
+

=                                                (2) 
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3. specificity: it measures how much a classifier can recognize negative 
examples 

     
FPTN

TNspec
+

=                                             (3) 

 
4. precision: it is the ratio of predicted positive examples which really are 

positive 

     
FPTP

TPprec
+

=                                             (4) 

 
5. F-measure: it is the harmonic mean of sensitivity and precision [7] 

     
( )

precsens

precsens1
mea.F

2

×β+

××+β
= , 0≥β                            (5) 

 
6. G-mean1: it is the geometric mean of sensitivity and precision [8] 

     precsensGSP ×=                                        (6) 

 
7. G-mean2: it is the geometric mean of sensitivity and specificity [8] 

     specsensGSS ×=                                        (7) 

 
     In this study, the β parameter on F-measure is equal to 1, which means that 
sensitivity and precision have the same importance. 
     It is known that there is a decreasing hyperbolic relation between sensitivity 
and precision [9] and a way to deal with this employs ROC graphs. These graphs 
have been used as a tool for visualization, organization and selection of 
classifiers based on their performances [10]. A ROC graph is bidimensional in 
which the FP rate (1 – specificity) is plotted on the horizontal axis and the 
sensitivity on the vertical one. Fig. 1 shows some classifiers represented as dots 
in the ROC space. Fawcett [10] calls them discrete due to the lack of class 
membership information on the predictions, that is, a classifier only outputs the 
class and not the degree to which an object is a member of the class. The ones 
which provide these degrees are called by the author as scoring classifiers. 
     It is relevant to note that the nearer to the upper-left side of ROC space, the 
better a classifier is. Moreover all classifiers in the diagonal line have random 
behavior and the ones below this line should be discarded. 
     The focus of this study is on discrete classifiers and their ROC curves are the 
“curves” which connect the classifiers dots to the diagonal edges (fig. 2). It is 
easy to notice that classifiers A and B are better than the others but the 
comparison between them is difficult. 
     A way to solve this problem is to calculate the AUC, that is, the area under 
ROC curve (fig. 3). The greater the area, the better is the classifier. 
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Figure 1: Discrete classifiers performance on ROC space. 
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Figure 2: ROC curves of some discrete classifiers. 
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Figure 3: AUC of some discrete classifiers. 
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3 Generalizing some measures to multi-class problems 

There is no consensus about how to act when problems with more than two 
classes are faced. Two strategies have been proposed for AUC and this work 
proposes to perform the same operations for F-measure and G-mean. 
     The first strategy [11] draws a ROC curve for each class of a problem in 
which each class is considered as the positive class and the remaining ones the 
negative class. Therefore, after the calculation of the AUC for each class, the 
final AUC is the weighted mean of them, in which the relative frequencies of the 
classes on the data are their weights: 
 

     ( ) ( )ir

K

1i
itotal cfcAUC1AUC ×=∑

=

                            (8) 

 
in which K is the amount of classes. It is relevant to point out that this procedure 
causes the imbalancing of classes, but Fawcett [10] defends it by noticing that 
the computations are very simple and the curves are easily visualized. 
     The second approach [12] tries to avoid the class imbalancing by computing 
the final AUC based on each pair of classes. In other words, at a given time, a 
pair of classes is selected and one is defined as the positive class and the other as 
the negative class. The AUC of this setting is calculated and the process is 
repeated with these same classes, but now in changed roles. This scheme is 
performed to each pair of classes and the final AUC is defined by the following 
expression: 
 

     ( )∑
≤≤

×
−×

=
Kj,i1

jitotal c,cAUC
)1K(K

22AUC                     (9) 

 
     This research extends F-measure and G-means on the same fashion as above. 

4 Experimental results and analysis 

4.1 Experiments performed 

In order to observe the metrics behavior, a genetic fuzzy system [13] and a C4.5 
decision tree tool [14] were used to produce classifiers on seven well- known 
datasets obtained in UCI repository, besides a meteorological dataset from 
International Airport of Rio de Janeiro. Table 1 shows the datasets, their 
dimensions, the amount of rules generated and their alias to future reference in 
this text. 
     The genetic fuzzy system is a genetic algorithm which optimizes zero-order 
TSK fuzzy rule bases in order to selects the shortest subset of rules with 
maximum accuracy and minimum amount of features possible. It has some 
special features like population initiation by fuzzy trees and two schemes for 
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Boolean recombination [15]. Table 2 shows some settings employed and each 
one was performed 10 times to obtain the mean results. 
     Before working with the datasets, some changes were made to allow the 
analysis of the method. Repeated records or records with incomplete information 
were eliminated and qualitative features were converted to discrete quantitative 
features. The employed scheme of testing was ten-fold stratified cross-validation. 

Table 1:  Summary of datasets' characteristics. 

Dataset  Valid 
 features Classes  Valid 

 records 
Reference 

balance scale   4 3 625 bala 
car evaluation   6 4 1728 car 
credit card approval 15 2 653 cred 
fog classification 18 7 26482 fog 
glass identification 9 7 143 glass 
ionosphere 33 2 351 iono 
pima indian diabetes 8 2 768 pima 
yeast protein localization 8 10 1484 yeast 

Table 2:  Genetic fuzzy system settings. 

Recombination Reference Initialization Reference 
boolean-1 bo1 random rand 
boolean-2 bo2 fuzzy tree fdts 
uniform uni fuzzy tree with

rule exclusion 
fdtx 

 
     It is relevant to notice that the number beside the measures names represents 
the strategy of extension to multiclass problems employed: 1 for the first scheme 
– which considers one class against all – and 2 for the second – which deals with 
each pair of classes. 

4.2  Results analysis 

Observing the results from problems with two classes in figs. 4-5 – cred, iono 
and pima – the measures had practically the same output. On multi-class 
problems it is possible to notice the differences between them. Considering 
measures with higher values as optimistic and those with lower values as 
pessimistic, it is clearly shown that AUC1 is the most optimistic evaluation and 
GSS2 the most pessimistic. 
     Following this concept, on comparing the two ways of extending evaluation 
metrics to multi-class problems, it can be seen that the first strategy is more 
optimistic than the second one irrespective of the measure employed.  
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Mean of evaluations - car
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  (c) 
Mean of evaluations - fog
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Figure 4: Mean of evaluations on bala, car, cred and fog datasets.
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(b) 
Mean of evaluations - pima
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(c) 
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(d) 
Figure 5: Mean of evaluations on glass, iono, pima and yeast datasets.
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5 Final considerations 

This study aimed to contribute to the discussion of how to evaluate a classifier 
performance by extending F-measure and G-mean metrics to multi-class 
problems as done with the area under ROC curve. Some well-known problems 
were approached by a genetic fuzzy system and by a decision tree tool. The 
results showed that on two-class problems the metrics have similar behaviour. 
This situation may be justified by the fact that these problems do not have 
imbalanced classes. On multi-class problems, two metrics were well-behaved: 
AUC1 produced the highest evaluations and GSS2 the lowest ones, being 
considered optimistic and pessimistic, respectively. 
     The results obtained from the eight problems suggest that the second strategy 
of metrics extension to multi-class problems is more rigorous than the first, 
mainly when there are rare classes. Future studies will consider other datasets 
with two classes, one being rare, or more classes. Moreover other classification 
models will be employed in order to verify whether these observations will be 
repeated. 
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