
FORMAL SOFTWARE INSPECTIONS: AN INDUSTRIAL
APPLICATION OF FUNCTION TABLES AND EVENT-B

TO SOFTWARE OF A WAYSIDE TRAIN
MONITORING SYSTEM

ROBERT ESCHBACH
ITK Engineering GmbH, Germamy

ABSTRACT
The experience gained in the industrial application of software inspections using Function Tables and
Event-B to a subsystem of a Wayside Train Monitoring system (WTMS) is presented in this paper. The
WTMS Configuration Management System (CMS) supports the creation and management of
configuration data for the WTMS. The correct and reliable implementation of the required system
functions, especially those dealing with data handling and data management, is of particular importance
for the overall quality of the system since faults in these functions may lead to critical failures and
malfunctioning. Therefore, the development of the data handling part of a CMS requires the use of high
integrity methods like systematic software inspections in order to ensure the highest quality. Function
Tables have been successfully applied for the inspection of safety-critical software. In our industrial
project, a special variant of Function Tables was defined that can be easily mapped to formal Event-B
specifications. Event-B with its set-theoretic basis for modeling, its concept of refinement and the use
of formal proof to ensure correctness of refinement steps, is used to formally analyze the derived
Function Tables. The systematic derivation of Function Tables is done by a verification-based
inspection using reading technique “stepwise abstraction”.
Keywords: software inspection, Function Table, Event-B, stepwise abstraction.

1 INTRODUCTION
The purpose of a Wayside Train Monitoring System (WTMS) is to detect early threats that
may lead to hazards and damages by monitoring trains and environmental conditions [1].
Typical examples are the detection of hot box, brake-locking or load displacements. A
WTMS is a highly distributed system that, from a system data perspective, gathers, analyzes
and exchanges different kinds of measurement and status data. A central part of a WTMS is
the Configuration Management System (CMS). It is responsible for the correct data exchange
between connected devices and control and management service points. The goal of our
project was the development of a server-based subsystem of the CMS. In Eschbach [2] the
formal conceptual data analysis of CMS management data using Event-B has been presented.
In this paper the experiences gained in the systematics inspection of software using Function
Tables and Event-B will be described.
 In Basili and Selby [3] the authors compared three software quality assurance techniques:
(a) code reading by stepwise abstraction, (b) functional testing using equivalence partitioning
and boundary value analysis, and (c) structural testing using 100% statement coverage
criteria. These techniques were compared w.r.t. three aspects: fault detection effectiveness,
fault detection cost, and classes of faults detected. One major outcome of this study is
summarized by the authors as:

With the professional programmers, code reading detected more software
faults and had a higher fault detection rate than did functional or structural
testing, while functional testing detected more faults than did structural testing,
but functional and structural testing were not different in fault detection rate.

Computers in Railways XVII 293

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

doi:10.2495/CR200271

 In Linger et al. [4] this reading technique is characterized as follows:

The process of reading a poorly documented program bottom up is called
stepwise abstraction. Stepwise abstraction may be required in either the
verification of correctness or the determination of program function.

 Based on these results we chosen the reading technique stepwise abstraction for software
inspection in our project. The applied inspection technique was strongly influenced by the
cleanroom inspection methods (see Mills et al. [5] and Mills [6]). The cleanroom inspection
methods are verification-based methods with the goal of finding functional defects in
software through mathematical verification building upon the box-structured method
(see Mills [7]). In our project we have used Function Tables in order to abstract from concrete
clear-box software structures to more abstract state box and black box structures.
 The results of Elberzhager et al. [8] were used to integrate the software inspection with
our testing processes. For this purpose, project-specific assumptions have been identified and
contextfactors have been derived in order to integrate our inspection processes based on
stepwise abstraction with our testing processes. Furthermore, so called Goal Indicator Trees
(GITs), as defined in Kloos et al. [9], which support inspectors in performing an inspection,
thereby assuring the quality of work products and improving the quality of the overall system,
were used to identify the relevant quality objectives and refine them into appropriate quality
indicators. One outcome of this analysis was to focus formally on software functions that
may cause database inconsistencies.
 In Powell [10] the authors present a verification-based software inspection technique
using tool support. The proposed tool extracts and generates proof obligations directly from
software and supports and guides an inspector by his semi-formal verification. The proposed
approach does not lead to a formal model of software functions as intended in our project.
How an inspection process can be improved by focusing and tailoring the inspection on
experiences and expertise of the reviewers is described in Parnas and Weiss [11]. The
proposed approach does not directly address formal specification and verification but is of
great practical value. In Singh et al. [12] the authors present a refinement strategy to generate
formal Event-B models from tabular expressions. The refinement strategy, especially the
generation of models is based on a correct-by-construction approach. The proposed approach
will be illustrated by an insulin infusion pump case study. The approach addresses formal
specification and verification but is not used for formal software inspection, which requires
an appropriate abstraction strategy. Module interface specification enriched with assertions
and semi-formal proofs can be of great advantage, when inspecting code w.r.t. contracts
given by pre- and postconditions. These results are described in Jackson and Hoffman [13].
The paper covers some of the underlying ideas of our verification-based software inspections
technique, but does not address suitable abstraction strategies as well as the formal
specification and verification aspects. The verification-based inspection technique presented
in this paper is based on a systematic abstraction strategy that allows for stepwise abstraction
and the creation of a formal Event-B model. Furthermore, the presented inspection technique
is scalable w.r.t. the degree of formality, i.e. depending on the concrete context it is possible
to work with an informal model specified with natural language statements as well as with a
complete formal Event-B model. Techniques like the GITs, as defined in Kloos et al. [9], can
be used to derive criteria, that supports the decision which degree of formality is appropriate
in a concrete context.
 Event-B [14], [15] with its set-theoretic basis for modeling, its concept of refinement and
the use of formal proofs ensuring correctness of refinement steps has been used for the formal
code inspection based on Function Tables and reading technique stepwise abstraction.

294 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

Formal methods, especially Event-B have been applied successfully in many safety-critical
railway systems [16]–[18]. The success of Event-B and the B method has even an influence
on the definition of CENELEC standard EN50128 [19]. A state-of-the-art of methods
and tools for the verification of interlocking systems can be found in Haxthausen and
Peleska [20].
 In the following it will be described how the application of Function Tables and Event-B
together with the reading technique stepwise abstraction can be successfully used to
systematically inspect and analyze critical software.

2 WAYSIDE TRAIN MONITORING SYSTEM (WTMS)

2.1 Architecture

The CMS can be used to create configuration data for the WTMS. On an abstract level the
CMS consists of data and operations related to this data (see Fig. 1). CMS data can be further
divided into data for the ticket system and technical configuration data related to the WTMS.
The CDM and FCDM has been created for the ticket system.

Figure 1: Conceptual view of WTMS and CMS.

2.2 Challenges and solutions

Since a CMS is responsible for correct data exchange, data integrity is a very important
quality attribute. Furthermore, a systematic handling of faults is very important. From an
engineering point of view the main focus was on fault prevention rather then fault
identification and removal. Another important concept is fault tolerance. Strategies for
fault tolerance help to avoid failures during system execution by means of error detection and
recovery mechanisms. Using database constraints and triggers based on formal models as
well as SQL statements involved in transactions with roll-back mechanisms, a specific kind
of fault tolerance has been achieved.
 Data integrity and especially data consistency of system data is one of the most important
quality properties of a CMS since inconsistency may lead to critical malfunctioning.
Therefore, the development of a CMS requires the use of high integrity methods in order to
ensure the highest quality.
During system development, it is important to establish techniques for fault prevention. A
fault may cause errors during system execution and may lead to critical situations. Different
techniques for fault prevention exist. For example, coding guidelines or systematic code

Computers in Railways XVII 295

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

inspections may help software developers to prevent faults. The overall goal should be to
prevent almost all faults in order to deliver (almost) zero-fault software.
 Another important quality attribute required for the CMS is fault tolerance. Since each
non-trivial system may have faults, it is very important to deal with faults in a systematic
way. Fault tolerance covers different techniques for error detection as well as for system
recovery. A special way to recover a consistent system state in a CMS is to remove
inconsistent data and roll back to an earlier consistent and saved data restoration point. In our
project, a sequence of database statements was embedded into a transaction with associated
rollback mechanisms. Whenever an exception occurs (for example, by violating a unique or
foreign key constraint), the database will roll back to the last saved restoration point. The
function ewt will check whether the execution of the transaction was successful or not and
will trigger a warning in the latter case.

3 EVENT-B
Event-B is a formal method that can be used to model and analyze state transition systems
(see Abrial [14]). Event-B is part of the B-Method (see Abrial [15]). Event-B supports
refinement-based development of transition systems. It is based on of first-order logic and
typed set theory. Tool support for Event-B is given by the Rodin Platform
(http://www.event-b.org). An Event-B specification consists of a static and a dynamic part.
The static part describes constants (context), the dynamic part behavior (machine).
 A context is used for specifying sets, constants, axioms and theorems. Axioms and
theorems are used to state properties of sets and constants. In this paper execution modes
were specified as constants among others (see Fig. 2). The context ctx − ewt depicted in
Fig. 2 defines a set ExecMode, four constants start, execute, wait and exit. The axiom states
that ExecMode = {start,execute,wait,exit} and that set ExecMode has exactly four elements.

context
ctx−ewt

sets
ExecMode
. . .

constants
start
execute
wait
exit
. . .

axioms
partition (ExecMode , { start } , { execute } , { wait } , { exit })
. . .

end

Figure 2: Context ewt.

 A machine describes transitions (events) and may use the information of a connected
context. A machine specifies variables, invariants and events. An event describes a transition
and consists of a possibly empty set of event parameters, guards, that describes conditions

296 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

under which an event is enabled and actions, that describe how parameters will change, if the
event occurs (see Fig. 3).

machine
ewt

sees
ctx−ewt

variables
phase
current_db_state
consistent_db_state
transaction
. . .

invariants
phase ∈ {ewt , ef } → { start , execute , exit , wait }
phase (ewt) = e x i t ⇒
 consistent_db_state (current_db_state) = TRUE
. . .

end

Figure 3: Machine ewt.

 The machine ewt depicted in 3 can use context ctx − ewt (sees clause) and defines the
variables phase, current_db_state, consistent_db_state and transaction. The invariant
phase ∈{ewt,ef}→{start,execute,exit,wait} states that phase is a total function with domain
{ewt,ef} and range {start,execute,exit,wait}. The second invariant states, that when
phase(ewt) = exit holds, the current db state current_db_state is consistent.

4 SOFTWARE INSPECTIONS
Since data consistency is one of the most important quality attributes of the CMS, the decision
was made to systematically inspect almost all software providing functionalities with
database access. The reading technique stepwise abstraction was chosen based on the results
given in Basili and Selby [3].
 In our project, the execution of a sequence of database statements are always embedded
into a SQL transaction with rollback mechanism. A simplified skeleton of the function that
embeds the execution of multiple SQL-instructions into a transaction is shown in Fig. 4.
 Function ewt has function pointer ef as argument. In the first step, relevant program
variables of ewt will be identified. In this example these are the following variables:

1. rid (return value of function ewt),
2. rc (assigned to the return value of function ef).

 We use so-called meta-variables for expressing abstract properties. The status of a
transaction will be abstractly represented by meta variable transaction

 transaction ∈{tr_begin,tr_commit,tr_rollback}. (1)

 If function ewt starts a transaction, we simply write

 transaction := tr_begin. (2)

Computers in Railways XVII 297

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

int ewt (const std : : function <bool ()> &ef) {
try {

tr begin (db) ;
bool rc = ef () ;
if (! rc) { throw Exc (” ef . . . ”) ; }
tr_commit (db) ;
rid = . . . ;
return rid ; }

catch (const C_Exc &exc) {
tr_rollback (db) ;
throw ; } . . . }

Figure 4: C++-Function ewt.

 In the same way, a transaction commit or rollback wil be treated. Since function ef may
throw an exception, we introduce a meta variable exception, which is either TRUE or FALSE.
The following condition describes, that ef has thrown an exception:

 exception = TRUE. (3)

 Furthermore, we define a meta variable for the current database state current_db_state
and the current restoration point restoration_point. Since we just want to distinguish database
states, we model both meta variables as natural numbers, i.e.

 current_db_state,restoration_point ∈ℕ. (4)

 The consistency of db states is represented by meta variable consistent, which is either
TRUE or FALSE. The execution phases of functions ewt and ef will be represented by variable

 phase : {ewt,ef}→{start,execute,wait,exit}. (5)

 In phase start variables and meta variables will be initialized. Phase execute covers the
execution and phase wait is used to model the exection of other Function Tables. The
execution ends in phase exit.
 During the stepwise construction of Function Table FT-EWT (see eqn (5)), the explicit
scheduling of function ewt will be replaced by an implicit scheduling based on conditions.
The table is created bottom up using the reading technique stepwise abstraction as defined in
Linger et al. [4]. The Function Tables presented in this paper are a variant of those proposed
by Dave Parnas (see [21], for example).
 Each column of the derived Function Table, as shown in Fig. 5, describes a specific
condition and associated actions, i.e. a parallel assignment of values to variables. In our
example, a condition is related to:

 the current execution phase phase ∈{start,execute,wait,exit},
 the existence of an exception exception ∈{TRUE,FALSE} and
 the return code rc ∈{undef,ok,nok}.

 Initially, the execution starts with phase(ewt) = start and phase(ef) = wait. The conditions
are organized hierarchically. The Function Table can be read column by column starting with
the column condition, then going to the values that will be assigned to the specified variables

298 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

Figure 5: Function Table FT-EWT.

in parallel. A value cell marked with nc (no change) does not cause a change of the
corresponding variable.
 Each column of this table is associated with an event in Event-B with guards related to
the column conditions and actions defined as parallel assignment of the column values
to variables. For example, event ewt-execute-1, as shown in Fig. 6, has been derived from
column with Event Name = ewt-execute-1. The column condition is

 phase(ewt) = execute ∧ exception = FALSE ∧ rc = undef ∧ ef ∈{ok,nok}. (6)

 The parallel assignment can be specified as

 rc := ef,transaction := tr_begin,restoration_point := current_db_state. (7)

 The corresponding event defined in Event-B can be seen in Fig. 6.

Ewt_execute_1
any

ef
where

phase (ewt) = execute
exception = FALSE
rc = undef
ef ∈ {ok , nok}

then
rc := ef
transaction := tr_begin
restoration_point := current_db_state

end

Figure 6: Event ewt_execute_1.

 The main objective of the inspection was to verify that in phase exit the current data base
state is consistent. This can be formalized as following invariant:

 phase(ewt) = exit ⇒ consistent(current_db_state) = TRUE. (8)

Computers in Railways XVII 299

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

 The formal analysis was performed with the eclipse-based tool Rodin. The verification of
all invariants, especially invariant 8, was performed with theorem provers, SMT solvers
available in Rodin (using appropriate plugins). Furthermore, the model checker ProB was
also used to prove the deadlock freeness of the model. The state space has been explored by
stepwise execution of the model. The inspection of ewt und four instances of ef revealed
several serious incompleteness faults.

5 CONCLUSION
The knowledge gained in the application of systematic software inspections based on
Function Tables and Event-B to the configuration management system of a wayside train
monitoring system has been presented in this paper. The configuration management system
supports the creation and management of configuration data for the wayside train monitoring
system. The correctness and reliability of all software functions dealing with data handling
and data management is of utmost importance. Systematic software inspections of these
functions have been successfully used for fault detection. The reading technique stepwise
abstraction was used to create Function Tables that were later on mapped to Event-B
specifications for critical functions. In this way a formal analysis based on several formal
verification techniques like theorem proving, SMT solving, model checking and constraint
solving was possible. Furthermore animation of the functional behavior was used for
validation purposes. Several critical incompleteness faults could be identified and corrected.
The Function Tables, especially informal tables, were of great practical value since they were
used not only for fault detection but also for creating common understanding within the
development team. The reading technique stepwise abstractions helps to get the analyzed
functionalities under intellectual control. Event-B as underlying formal method has greatly
improved the analysis of critical functions. Especially the integration of formal specifications
and formal verification, as well as the refinement concept, makes Event-B to a practical and
powerful formal technique useful in industrial projects.

REFERENCES
[1] Bracciali, A., Wayside train monitoring systems: A state-of-the-art and running safety

implications. International Journal of Railway Technology, 1(1), pp. 231–247, 2012.
[2] Eschbach, R., Industrial application of Event-B to a wayside train monitoring system:

Formal conceptual data analysis. Formal Methods – The Next 30 Years, eds M.H. ter
Beek, A. McIver & J.N. Oliveira, Springer International Publishing, pp. 738–745,
2019.

[3] Basili, V. & Selby, R., Comparing the effectiveness of software testing strategies.
IEEE Transactions on Software Engineering, SE-13(12), pp. 1278–1296, 1987.

[4] Linger, R.C., Mills, H.D. & Witt, B.I., Structured Programming, Theory and Practice,
The Systems Programming Series, Addison-Wesley, 1979.

[5] Mills, H., Dyer, M. & Linger, R., Cleanroom software engineering. IEEE Software,
4(5), pp. 19–25, 1987.

[6] Mills, H.D., Zero defect software: Cleanroom engineering. Advances in Computing,
36, pp. 1–41, 1993.

[7] Mills, H., Stepwise refinement and verification in box-structured systems. Computer,
21(6), pp. 23–36, 1988.

[8] Elberzhager, F., Eschbach, R. & Munch, J., The relevance of assumptions and context
factors for the integration of inspections and testing. 2011 37th EUROMICRO
Conference on Software Engineering and Advanced Applications, IEEE, pp. 388–391,
2011.

300 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

[9] Kloos, J., Elberzhager, F. & Eschbach, R., Systematic construction of goal indicator
trees for indicator-based dependability inspections. 2010 36th EUROMICRO
Conference on Software Engineering and Advanced Applications, IEEE, pp. 279–282,
2010.

[10] Powell, D., Tool support for verification-based software inspection. 2004 Australian
Software Engineering Conference Proceedings, IEEE, pp. 232–240, 2004.

[11] Parnas, D. & Weiss, D., Active design reviews: Principles and practices. Journal of
Systems and Software, 7(4), pp. 259–265, 1987.

[12] Singh, N.K., Lawford, M., Maibaum, T.S.E. & Wassyng, A., Use of tabular
expressions for refinement automation. Model and Data Engineering, eds. Y.
Ouhammou, M. Ivanovic, A. Abello & L. Bellatreche, Springer International
Publishing, Vol. 10563 of Lecture Notes in Computer Science, pp. 167–182, 2017.

[13] Jackson, A. & Hoffman, D., Inspecting module interface specifications. Software
Testing, Verification and Reliability, 4(2), pp. 101–117, 1994.

[14] Abrial, J.R., Modeling in Event-B: System and Software Engineering, Cambridge
University Press: Cambridge, 2010.

[15] Abrial, J.R., The B-Book: Assigning Programs to Meanings, Cambridge University
Press: Cambridge, 1996.

[16] Lecomte, T., Servat, T. & Pouzancre, G., Formal methods in safety-critical railway
systems. 10th Brazilian Symposium on Formal Methods, 2007.

[17] ter Beek, M.H., Fantechi, A., Ferrari, A., Gnesi, S. & Scopigno, R., Formal methods
for the railway sector. ERCIM News, 112, 2018.

[18] Ferrari, A. et al., Survey on formal methods and tools in railways: The astrail approach.
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification,
and Certification, eds S. Collart-Dutilleul, T. Lecomte & A. Romanovsky, Springer
International Publishing: Lille, pp. 226–241, 2019.

[19] Fantechi, A., Fokkink, W. & Morzenti, A., Some Trends in Formal Methods
Applications to Railway Signaling, John Wiley & Sons: Hoboken, pp. 61–84, 2012.

[20] Haxthausen, A.E. & Peleska, J., Model Checking and Model-Based Testing in the
Railway Domain, Springer Fachmedien Wiesbaden, pp. 82–121, 2015.

[21] Parnas, D.L., Inspection of safety-critical software using program-function tables.
Proceedings of the IFIP 13th World Computer Congress, Hamburg, Germany, pp.
270–277, 1994.

Computers in Railways XVII 301

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

