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ABSTRACT 
This paper proposes the generalised model for formation the patterns of train arrival time distribution. 
The model provides that the arrival time has a random component. A feature of the model is the 
allowance for the stochastic dependence of travel interval on train departure time deviation. Within  
the framework of the model, a formula for the distribution function of the arrival time is obtained. The 
paper describes the method for checking the degree of stochastic relationship of the above random 
variables. Theoretical formulations are confirmed by analysis of statistical data reflected by the 
passenger train traffic on Russian railways. 
Keywords:  train traffic, stochastic model, operation time distribution, statistical dependency. 

1  INTRODUCTION 
Stochastic models are used for probabilistic forecasting of the traffic breakdowns when 
random disturbances occur (see, for example, [1] and [2]). They make it possible to identify 
intertrain conflicts and predict their further propagation over the railway network. The 
models proposed allow you to eliminate the delays or to reduce their duration. Distributions 
of the following random variables such as departure moment, travel time, headway, etc. can 
be considered as input data of such a model. Stochastic simulation results in the arrival delay 
probability distribution such as functional relation from the input random variables. In turn, 
knowledge of the delay distribution is the basis for predicting the delay duration as well as a 
set of measures to eliminate it. 
     It is usually assumed that the type of input distributions is standard when arrival delay 
function calculating. As a rule there are used an exponential distribution function or its 
modifications in a majority of papers. Such the model describes only particular cases and do 
not cover other possible variants of input distributions observed in reality. Our study shows 
that a more general approach is to represent the input random variables using the more 
comprehensive class of probability distribution. 
     This article proposes the stochastic model of the train run along some railway section 
which includes several stations. The input data are the distributions of departure moments 
and travel times. The result of simulation process is the set of distributions the arrival time 
deviation which is obtained for each station. The analytical method assumes that there are no 
restrictions on the form and the type of input distributions. 
     The statement of the problem analysis arose as a result of studying the real statistics of 
train traffic on the Russian railways. The research has shown the need to consider two cases 
of formation the output densities. The first case relies on the situation when the input random 
variables (departure time and travel time) are independent. In this case, the output distribution 
is a convolution of the input distributions. In the second case, a dependence of input random 
variables is observed (the travel time depends on the departure time). Based on the available 
statistics we create the output distribution only for those stations at which the input random 
variables are linearly dependent. The analysis is shown how well the output distribution of 
arrival times is consistent with the real statistics. 
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     An ability to use arbitrary input distributions expands the possibilities of applying the 
model to various situations with different types of input random variables behave differently. 

2  LITERATURE REVIEW 
Modeling the process of random delays occurrence and their propagation along the train 
chain makes it possible to assign rational traffic adjustments and predict their likely 
consequences. The analytical method which uses convolutions of distributions of the initial 
(at the site entry) and newly arising deviations to obtain the delay density is proposed in 
Muhlhans [3]. Applications of this approach are limited since only the uniform distribution 
the secondary delays is used. In reality, this assumption is rarely confirmed. One effective 
approach which allows us to predict statistical characteristics of the train traffic is  
Situational-Heuristic Method (SEMN) [4]. The expected values of operating times are 
obtained from statistics of previous periods taking the current on-site situation into account. 
A similar approach is used in Karetnikov [5] which models the local traffic using average 
values of train processing time. It should be noted that there are attempts to derive some 
average train schedule based on the emerging situation. Such the attempts are fraught with 
conservation of technological problems that exist on the site. 
     One of the fundamental papers is devoted to the generic problem of traffic stochastic 
modeling under consideration [1]. The authors describe a model of delay formation in a train 
set using a probabilistic approach. Total run time of the train is considered as a sum of random 
running intervals along the section when analyzing the process of delay propagation. Buker 
and Seybold [6] show that calculation of the arrival time distribution at the terminal station 
is based on repeated use of convoluting the distributions of random variables characterizing 
the elementary operations. 
     Below mentioned papers use this approach to analyze the process of delay propagation 
along the train chain. Boucherie and Huisman [7] solve the problem of interacting the two 
trains that have different speeds and are influenced by random impacts. The result of analysis 
is used to model the train traffic in a dense heterogeneous train flow. This idea is developed 
further in the papers [2], [6], [8]. Description of the traffic process [2] occupies an 
intermediate position between the macro-models and models with very detailed description 
of the process, i.e. micro-models. Approximation method is proposed for exact representation 
of delay distributions. Cumulative distribution is calculated as the result of sequence the 
elementary activities; the activity chain is determined by a stochastic event-graph. 
     The problem of predicting the random delay appearance and propagation across the large 
railway network most fully is considered in Berger et al. [8]. Scattering of arrivals is treated 
as a random variable generated with joint accounting the departure times and the running 
intervals. The main subject of research is the process of adjusting the schedule at transfer 
stations in the presence of multiple delays. The model operates with discrete distributions of 
travel, dwell times and deviations from the schedule. The authors use a simplified description 
of input random variables so that they receive a small computing time. 
     The proposed approach was further developed in Buker and Seybold [6] which attempts 
to take the realistic distribution of operation time into account and choose the appropriate 
approximation. The framework proposed uses a probabilistic operational graph which 
considers passenger transfer operations and conflict situations. The authors argue that 
mesoscopic modelling of traffic is the purposeful approach to compute the delay propagation. 
The model considers only station and crossing as the operating points where conflicts can 
occur. The purpose of the study is to reduce computing time. 
     The general characteristic of the schedule is the ability to absorb small current deviations 
[9], [10]. The process of random deviations calculation is the basis of the methodology for 
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determining corrective actions that reduce the time required to restore the normative  
schedule [11]. 

3  A GENERALIZED MODEL FOR THE FORMATION OF THE  
DISTRIBUTION OF THE ARRIVAL TIME 

In this section we propose a model for the formation of the arrival times taking into account 
that the departure moments, travel times and possible delays can have the random nature. 
Random trajectories of train run are depicted in Fig. 1 as “beams” of segments emanating 

from the stations 1S  and 2S .  

 

Figure 1:  Scheme of the formation of arrival moments. 

     In Fig. 1 symbols iT , i = 1, 2, denote the departure times from stations iS  respectively, 

and symbols kV , k = 2, 3, the arrival times at stations kS  respectively. For each i = 1, 2, the 

values of iT  are scattered, and to emphasize this, some possible values of iT  are  

indicated by means of a brace. Similarly, for each k = 2, 3, some possible values of kV   

are indicated by means of a brace too. 
     To describe the proposed model, we need the following notations: 

     id  is the scheduled departure time from the station iS , 1 1i ,N  , where N  is the 

total number of stations; i i iδ T d  ; 

     1i ,iρ   is the travel time from station iS  to station 1iS  ; 

     ia  is the scheduled arrival time at the station iS , 2i ,N ; i i iξ V a  ; 

     iτ  is the stop duration at station iS , 2 1i ,N  . 

     Distribution functions of random variables iT , 1i ,iρ   and iV  are denoted by  iF t , 

 1i ,iL t  and  iG t , respectively, and are defined by the following equalities: 

   Ρi iF t T t  ,    1 1Pi ,i i ,iL t ρ t    and    Pi iG t V t  . 

     Corresponding density functions, if they exist, will be denoted by the same letters as 

distribution functions, only lowercase ones:  if t ,  1i ,il t  and  ig t . Fig. 2 shows a 

scheme of the formation of the following random variables: iV , iT  and 1iV  . 
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Figure 2:  Scheme of the formation of the random variables: iV , iT  and 1iV  . 

     According to this scheme, in particular, we have, 

 1 1i i i ,iV T ρ   . (1) 

     Now we will show that the following equation is valid for the distribution function of 

1:iV   

      1 1Ρi i ,i i iG t ρ t x |T x dF x .


 
     (2) 

     We will use nonstrict reasoning for the derivation of (2) not to clutter up the paper. 

     First, suppose that for some constants a b  the equality  Ρ 1ia T b    holds. 

Divide the segment  a,b  into n  equal parts by points: 0 1 na x x x b    . Using 

the well-known total probability equation we obtain from (1) that for each 1 1i ,N  , 

 
   

   
 

1 1
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        (3) 

where  1 1Ρ i ,i i k i kρ t T | x T x      is the conditional probability of event  1i ,i iρ t T   , 

provided that event  1k i kx T x    has occurred. Let us consider in eqn (3) the  

following term: 

   1 1 1Ρ Ρk i k i ,i i k i kx T x ρ t T | x T x        . 

     At first,      1 1Ρ k i k i k i kx T x F x F x     . In addition, assuming that the 

difference 1k kx x   is small enough, we have the approximate equality i kT x , since 

1k i kx T x   . Hence, rearranging the factors in (3), we obtain the equality 

1iS 

iS

1iS 

di
st

an
ce

1iT 

1iτ  iτ 1iτ 1i ,iρ  1i ,iρ 

iV iT

time 

1iT 1iV 

196  Computers in Railways XVII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press



   
 

   1 1 1 1Ρ
k

i i ,i k k i k i k i k
x

G t ρ t x | x T x F x F x           , 

the right hand-side of which is the Stieltjes sum. When infinitely grinding the segment  a,b  

this sum converges to the Stieltjes integral 

   1Ρ
b

i ,i i ia
ρ t x |T x dF x    . 

     Letting that a  tends to   and b  tends to  , we obtain eqn (2). 

     If density function  if x  exists, then 

     1 1Ρi i ,i i iG t ρ t x |T x f x dx.


 
     

     In addition, if the conditional density  1Ρ i ,i i

d
ρ t x |T x

dt      exists, then density  1ig t  

exists and is equal to 

     1 1Ρi i ,i i i

d
g t ρ t x |T x f x dx.

dt



 
     

     The conditional distribution function  1Ρ i ,i iρ t x |T x     is sometimes written 

differently. Let  if x, y  be the density of the joint distribution of iT  and 1i ,iρ  . Let x  be 

such that   0if x  . For every such x  the conditional distribution function of the random 

variable 1i ,iρ   relative to the random variable iT  is defined as 

       1 1

1
: Ρ

y

i ,i i ,i i i

i

L y | x ρ y |T x f x,u du.
f x  

      

     Thus, 

        1 1  
t x

i i ,i i iG t L t x | x f x dx f x,u du dx.
  

   
      (4) 

     Note that    
 1 : i

i ,i

i

f x,u
l u | x

f x   is called the conditional density function of 1i ,iρ   

relatively to iT . 

     Eqns (2) and (4) contain the conditional distribution that allows one to take into account 

the dependence of 1i ,iρ   on iT . These eqns are universal, but their application requires 

additional study of the joint distribution of random variables iT  and 1i ,iρ  . 

     If random values iT  and 1i ,iρ   are independent, then (2) takes the form of convolution: 

             1 1 1 1i i i ,i i ,i i i ,i iG t F L t L t x dF x L t x f x dx.
 

    
        (5) 

     To obtain equalities for density  1ig t , it is necessary to replace the distribution 

functions in (5) with the corresponding densities. Note that the eqn for the moments of 
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arrival/departure in the discrete case is presented in Berger et al. [8]. This eqn, although in 
other notation, is a special case of equality (2). 
     Remark: let us say a few words about question of the existence of the Stieltjes integral in 
(2). According to Fichenholtz [12, p. 92] this integral exists if the conditional distribution 

function  1Ρ i ,i iρ t x |T x     is continuous with respect to the argument x.  

4  A METHOD FOR CHECKING THE DEGREE OF STOCHASTIC DEPENDENCE 
BETWEEN INPUT VARIABLES 

The stochastic model described in Section 3 operates with random variables iT , 1i ,iρ   and 

1iV   for which equality (1) holds. Recall the following property of variances: two random 

variables are uncorrelated if and only if the variance of their sum is equal to the sum of the 

variances. Using this property and equality (1), one can check whether random variables iT  

and 1i ,iρ   are correlated or not. 

     Suppose that for each station iS  we have a three-dimensional sample of volume n , from 

the distribution of the three-dimensional random vector  1 1i i ,i iT ,ρ ,V  . We will denote by 

symbol  D* X  the sample variance of a random variable X  (there is mean the 

asymptotically unbiased estimate): 

   2

1

1
D

n
*

i
i

X x X
n 

  , 

where ix  are the sample values, X  is the sample mean. For each fixed 1 i N  , we will 

check the equality 

    1 1D =D D* * *

i i i ,iV T ρ     , (6) 

admitting an approximate equality in (6). In the case when equality (6) is fulfilled at least 
approximately, we will test the hypothesis that the correlation coefficient for the random 

variables iT  and 1i ,iρ   is equal to zero, using Student’s t-test. To this end, we calculate the 

value of the following statistic: 

 
2

2
Τ

1

* r n

r









, (7) 

where 
*r  is the sample correlation coefficient, i.e. 
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where  cov* ,   denotes the sample covariance, iT  and 1i ,iρ   are the sample means, ijT  

denote sample values of iT , and  1i ,i j
ρ   sample values of  1i ,i

ρ  , 1 j n  ; 1 i N  . 

Note that for Student’s statistic we use the traditional notation Τ*
. 

     Let r  be the Pearson correlation coefficient. The hypothesis 0r   is considered as not 

contradict to experimental data with a significance level α  if  critΤ 2* t α,n - . The 

critical value  crit 2t α ,n -  is taken from the Student’s distribution table. 

     If the hypothesis 0r   is not rejected for the random variables iT  and 1i ,iρ  , then we 

can assume their independence (although it is well known that the non-correlation of random 
variables does not mean their independence). In this case, to find the distribution function 
(and, as a consequence, the density function) of the arrival times, one should use eqn (5) 
containing the convolution operation. 

     In the opposite case, if the hypothesis 0r   is rejected, and the equality of the sample 
variances (6) is not satisfied, we make an assumption about the stochastic dependence of 

1i ,iρ   on iT . If the modulus of the sample coefficient of correlation is close to 1, then we can 

consider that random variables 1i ,iρ   and iT  are linearly dependent, i.e. 

 1i ,i iρ aT b   , (9) 

where a  and b  are the coefficients of linear regression and are calculated by the  
known eqns: 

  

    
 

11
1 1

2

1

D

D

n

* ij i i ,ii ,i j
i ,i j*

n*

i
ij i

j

T T ρ ρρ
a r

T T T


 



    





,   1i ,i ib ρ aT  . (10) 

     We proceed to check the dependence of the random variables 1i ,iρ   and iT  on the example 

of a specific section of the railway. 

5  CHECKING THE DEPENDENCE OF INPUT RANDOM VARIABLES BY USING 
STATISTICAL DATA 

Consider the real section of the “Moscow-Tver” suburban line with intense train traffic. The 
line is limited by the terminals “Moscow” (point 1) and “Tver” (point 13) and includes 11 
intermediate stations. The average travel time at the line is about three hours. Statistics are 
collected for departure, travel and arrival times for morning rush hours. Immediately, we note 
that all sample values are expressed in minutes. In addition, samples for departure and arrival 
times are shifted to the left by the minimum observed sample value of departure time from 
station 1. This is done in order to take the zero time point as the departure time from station 1. 
     Let us find out whether equality (6) holds for some stations of the considered railway. 

Table 1 contains the calculated values of the sample variances  1D*

iV  ,  D*

iT  and 
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1D*

i ,iρ    , the sum   1D D* *

i i ,iT ρ     , as well as the values of the sample correlation 

coefficient r 
 for monitoring calculations. Using data provided in Table 1 one can see that 

the independence of the quantities 1i ,iρ   and iT  is possible for i = 3, 4, 12. 

     Next, we test the hypothesis 0r   by applying Student’s t-test. To this end, we calculate 
the sample correlation coefficients (8) and statistic (7). The hypothesis is tested with  

two significance levels, 1 0 05α .  and 2 0 1α . . The calculation results are presented  

in Table 2. 

Table 1:  Verification of statistical dependence the input variables (eqn (6)). 

i  1D*

iV    D*

iT  1D*

i ,iρ       1D D* *

i i ,iT ρ      r
 

1 23.9097 25.0556 0.6875 25.7431 -0.2209 
2 29.7431 23.9097 0.5556 24.4653 0.7241 
3 31.0764 30.0556 0.2431 30.2986 0.1439 
4 28.6667 28.0764 0.5764 28.6528 0.0017 
5 17.5764 24.8056 0.8542 25.6597 -0.8780 
6 35.6389 17.2500 4.7222 21.9722 0.7571 
7 34.5208 35.6389 0.2431 35.8819 -0.2312 
8 41.0000 33.7431 2.2431 35.9861 0.2882 
9 24.7934 31.7025 0.6281 32.3306 -0.8445 

10 0.5600 0.8100 0.2900 1.1000 -0.5571 
11 0.2400 0.4900 0.2100 0.7000 -0.7170 
12 1.6100 0.5600 1.2500 1.8100 -0.1195 

Table 2:  The results obtained by applying Student’s t-test. 

i r
 n  Τ*

  crit 1 2t α ,n -  

Conclusion 
with 

1 0 05α .  
 crit 2 2t α ,n -  

Conclusion 
with 

2 0 1α .  

1 -0.2209 12 -0.7161 2.2281 1: accepted 1.8125 1 
2 0.7241 12 3.3196 2.2281 0: rejected 1.8125 0 
3 0.1439 12 0.4598 2.2281 1 1.8125 1 
4 0.0017 12 0.0055 2.2281 1 1.8125 1 
5 -0.8780 12 -5.8017 2.2281 0 1.8125 0 
6 0.7571 12 3.6650 2.2281 0 1.8125 0 
7 -0.2312 12 -0.7516 2.2281 1 1.8125 1 
8 0.2882 12 0.9516 2.2281 1 1.8125 1 
9 -0.8445 11 -4.7313 2.2622 0 1.8331 0 

10 -0.5571 10 -1.8974 2.3060 1 1.8595 0 
11 -0.7170 10 -2.9093 2.3060 0 1.8595 0 
12 -0.1195 10 -0.3405 2.3060 1 1.8595 1 
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     According to presented data, it can be assumed that at stations 4 and 12, the independence 

of random variables 1i ,iρ   and iT  (i = 4, 12) takes place. To find the distribution density 

function  1ig t , it is required to use (5). 

     We can see in Table 2 that for i = 5 and 9, the coefficient r  is close to (-1). In these 
cases, we find out the linear dependence (9). Then the distribution function of the arrival time 
can be written as follows: 

    1 Ρ Ρ
1 1i i i i i

t b t b
G t T aT b t T F

a a

                 
. (11) 

     In the next section we will obtain the density functions for the arrival times and check the 
degree of their consistency with real-world data. 

6  COMPARISON OF THE MODEL WITH REAL STATISTICS EXAMPLES 
Let us verify the consistency of the model with real data. We begin the verification with the case 

when 1i ,iρ   and iT  are independent. In section 5, we found out that there is a reason that for 

i = 4, 12 random variables 1i ,iρ   and iT  are independent. Therefore, for these stations we will 

check how well the result obtained after applying the equality, similar to (5), for density 
functions will be consistent with real data. The results of the verification are presented in Table 

3, which contains histograms based on statistics for departure times 4T , 12T  (row 1) and travel 

times 4 5,ρ , 12 13,ρ  (row 2). We approximate these histograms by the following density functions: 

     0 4 32

4 32 0 4 . tf t I t . e   ,        1 42 9 143

12 143 10 143
.. tf t I t e t    , 

       2 753 8 11 7

4 5 11 7 35 3 11 7
.. t .

,l t I t . . e t .     and 

     20 36 29 5

12 13 27 5 32 5 0 3564 . t .

,l t I . t . . e    , respectively. 

     Let us explain what  I   means. The multiplier  I   is an indicator, i.e. 

 
1    if  

0    if  

, x A,
I x A

, x A,


   

 

where A is an arbitrary set. The functions  5g t  and  13g t  are determined by using an 

analog of eqn (5) for densities, i.e. 

     

       
5 4 5 4

11 7 2 753 8 11 7 0 4 32

32
                  43 7 14 12 11 7

,

t . .. t x . . x

g t l t x f x dx

I t . . e t x . dx,
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2

13 12 13 12

1 40 36 29 5 2 9 143

143
        3 564 27 5 32 5 143

,

.. t x . . x

g t l t x f x dx

. I . t x . e x dx.





     

 

    




 

     Calculations using the latest eqns are performed by means the technical computing system 
Wolfram Mathematica. 
     It can be seen from row 3 of Table 3, the resulting densities visually are in good agreement 
with the statistics of arrival times. 

Table 3:  Histograms and approximating densities when 1i ,iρ   and iT  are independent. 

Station 4 Station 12 

4T  12T  

 

4 5,ρ  12 13,ρ  

 

5V  13V  
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     Now we check the consistency of the model with real data in the case of dependence 1i ,iρ   

and iT . We restrict ourselves by the linear dependence of these values at stations 5 and 9, 

identified in Section 5 (see Table 1). The results of the verification are given in Table 4. 
Travel time (row 2) depends on the departure time (row 1) in accordance with (9). The 
histograms in row 1 are approximated by the following density functions: 

     0 23 47

5 47 0 23 . tf t I t . e   ,        0 21 104 5

9 104 5 0 21 . t .f t I t . . e   . 

Table 4: Histograms and approximating densities when 1i ,iρ   and iT  are dependent. 

Station 5 Station 9 

5T  9T  

 

5 6,ρ  9 10,ρ  

 

6V  10V  

 
 

     Density functions in row 2 of Table 4 are obtained from  5f t  and  9f t  as follows: 
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1 2

1 2
0 23 47 0 21 104 5

1 2
5 6 9 10

1 1 2 2

0 23 0 21
47  104 5

t b t b
. . .

a a

, ,

t b t b. .
l t I e , l t I . e .

a a a a

    
         

   
    

      
     

     The parameters 1a , 1b , 2a , 2b  are determined from the real data according to (10): 

1 0 1629a .  , 1 18 5868b . , 2 0 1189a .  , 2 23 1022b . . 

     The densities  6g t  and  10g t  are determined by using eqn (11), i.e. 

           5 9

6 5 10 9

1 1
      

1 1 1

dF y dF y t b
g t f y , g t f y , y .

dt a dt a a


    

  
 

     It can be observed from row 3 of Table 4, the output densities are in good agreement with the 
arrival time statistics. 

7  CONCLUSIONS 
The arrival time of a train can be described using two input random variables: departure time 
and travel time. The form of the arrival time distribution law is determined by whether the 
input random variables are stochastically dependent or independent. If the values are 
independent, then the output distribution is a convolution of two input distributions. In the 
opposite case, it is necessary to describe the relationship between input random variables:  
the dependence of the travel time on the departure time. And the output distribution will be 
like a distribution of the departure time converted by a certain way. In practice, on one section 
of the rail line, consisting of several stations, both dependent and independent input random 
variables are observed. It is shown in the work that in the case of input data independence, 
the density function obtained by the eqn containing convolution integral gives a good 
approximation to real data of arrival times. 
     In the present paper, only a linear dependence of the travel time on the arrival time is 
described. We specially selected examples when the modulus of the sample correlation 
coefficient is close to unity. In these examples, it is shown that the output density function 
obtained as a transformation of the departure time density function also gives a good 
approximation to real data of the arrival times. 
     It should be noted that cases when the modulus of the sample correlation coefficient takes 
intermediate values between 0 and 1 will be considered in a further study of the problem. 
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