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ABSTRACT 
A loading balance between express and local trains is a crucial issue on the train operation plan of urban 
railway, which provides two services on the same line. This is because passenger’s preference is 
affected by the train operation plan, such as headway and halting patterns. Recently, Seoul Metro Line 
9, in Korea, has experienced an imbalance, as the preference for express train over local train services 
is significantly higher, so the load factor for the express train was twice as much as for the local train. 
As such, to analyse load balance, a schedule-based transit assignment to determine the ridership by 
section and by train is needed when a timetable for trains and passengers’ trips is given. This paper 
develops the cost function considering the transfer between express and local trains as well as the train 
load factor in the time-expanded network via inverse optimization. We suggest a convex optimization 
model to ensure the path that the passenger has selected will cost less than the alternative path, and 
from this model, the parameters of the deterministic cost function were estimated. We employed the 
Frank-Wolfe-based transit assignment algorithm to estimate the equilibrium flow using our cost 
function. The algorithm was tested to Seoul Metro Line 9 in order to verify its accuracy. The results 
show that the difference in the actual ridership by train was less than 10%. Finally, we simulated 
reducing the load difference between the express and the local train through re-scheduling to increase 
the service frequency of express trains. 
Keywords:  inverse optimization, transit assignment, express trains. 

1  INTRODUCTION 
Train operation planning for an urban railway, which provides both express and local train 
service simultaneously, is necessary to maintain load balance between the two services [1]. 
This is because passenger preference is affected by the train operation plan, such as headway 
and halting patterns. Recently, Seoul Metro Line 9 in Korea has experienced an imbalance, 
as the preference for express train over local train service is significantly higher, so the load 
factor for express trains was twice as much as for local trains. As such, to analyse load 
balance, schedule-based transit assignment to determine the ridership by section and by train 
is needed when the timetable for trains and passengers’ trips is given. 
     Schedule-based transit assignment in a time-expanded network allows for the expression 
of the events of arrival and departure train and the complete passenger’s flow – boarding, 
alighting, and transfer. In a time-expanded network, we can analyse individual passenger 
choices. Although GPS or a Smart Card system can be used to collect massive and reliable 
trip data, difficulties in handling a large size network and obtaining massive data reveal that 
preferences at the microscopic level may have hampered the implementation of schedule-
based transit assignment in real cases. However, Hong et al. [2] recently developed a precise 
algorithm that detects an actual train-path for metro passengers based on an observation that 
tag-out times of passengers from Smart Card data were clustered.  
     In this paper, we propose a deterministic path cost function with three attributes – in-
vehicle time, wait time, and transfer time between express and local trains – to develop a 
schedule-based transit assignment model. Congestion effect measured by step function of 
relative weight on in-vehicle time increasing to predetermined crowding level. Stochastic 
assignment models which are based on random utility maximization (RUM) theory such as 
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logit estimate the coefficient of the cost function to maximize likelihood. However, this paper 
estimates parameters using inverse optimization due to assuming the deterministic path cost.  
     An optimization (forward optimization) addresses the problem of finding a point, an 
optimal solution, in the region delineated by a set of functions, or constraints, which 
minimizes a cost function called an objective. An inverse optimization, on the other hand, is 
the problem of calibrating a set of parameters in terms of objective and/or constraints, so that 
a prescribed solution becomes optimal [3]. The parameters should be what best explains user-
optimality, underlying the path choice of passengers. This implies that an inverse 
optimization has relevance in doing so. We will show that the inference problem can be posed 
as a convex quadratic optimization that allows an efficient solution method. 
     Tested on a daily set of trains, with parameters calibrated by the inverse optimization, 
from Seoul Metro line 9, the results showed a mean absolute percent error of deviation 
between actual and predicted passenger load of trains within 10%. Our model seems precise 
enough for the prediction of passenger behaviour required by the city of Seoul. 
     This paper is organized as follows. In Section 2, we describe the time-expanded network 
and cost function in the proposed transit assignment model. Section 3 describes the 
methodology of inverse optimization to infer the coefficient of parameters of the cost 
function. Section 4 evaluates the path choice predictability of our model in comparison with 
actual choices. Finally, Section 5 provides some concluding remarks, and suggests some 
directions for further research.  

2  TIME-EXPANDED NETWORK AND COST FUNCTION 
Time-expanded network 𝐺𝐺 = (𝑁𝑁,𝐸𝐸) is defined as Set N of place-time-defined nodes and Set 
E of edges, which is defined as Subset of N×N [4]. As shown in Fig. 1, each node i ∈ N has 
place, i.e., station and time value as attribute, and each edge represents an event in which a 
train departs from each station or arrives at the station. 
     On the time-expanded network, path P can precisely represent the movement of 
passengers who use local and express trains. As shown in Fig. 1, for example, a passenger 
who moves to Station E from Station A where local both trains and express trains stop can 
have P1, P2 and P3 as an alternative path. That is, the alternative paths set of this passenger 
is {P1, P2, P3}. P1 means a path in which a passenger transfers to an express train at Station 
C after using a local train, while P2 and P3 are the paths only for express train and local train, 
respectively. 
     Deterministic path cost function with three attributes – wait time, in-vehicle time and 
transfer time between express and local trains for schedule-based transit assignment model. 
The cost of path P on the time-expanded network is assumed to be a linear function, as shown 
in eqn (1). In-vehicle time is divided into 3 categories depending on the degree of in-vehicle 
crowding 

 c(𝑃𝑃) = 𝛼𝛼𝑊𝑊T𝑃𝑃 + 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝐿𝐿 + 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝑁𝑁 + 𝛽𝛽3𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝐻𝐻 + 𝛾𝛾𝐼𝐼𝐼𝐼𝑃𝑃, (1) 

• WT𝑃𝑃 : Waiting time of Path P 
• 𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝐿𝐿 : In-vehicle time given less than 100% congestion-rate on Path P (low-level 

ridership) 
• 𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝑁𝑁 : In-vehicle time given 100%~150% congestion-rate on Path P (normal-level 

ridership) 
• 𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝐻𝐻: In-vehicle time given more than 150% congestion-rate on Path P (high-level 

ridership) 
• 𝐼𝐼𝐼𝐼𝑃𝑃 : Transfer time between local and express trains on Path P 
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Figure 1:  Time-expanded network and alternative paths set. 

3  ESTIMATION OF COST FUNCTION VIA INVERSE OPTIMIZATION  
In the stochastic model based on the Random Utility Maximization (RUM) theory including 
the logit model, the coefficient of cost function is estimated to be Maximum Likelihood 
Estimation (MLE). However, if the path cost is deterministic, as it is in this study, MLE is 
not available. As such, this study uses the inverse optimization model to estimate the 
coefficient of cost function. 
     Given that the path selection of passengers is selfish routing [5], 𝑐𝑐(𝑃𝑃) ≤ 𝑐𝑐(𝑄𝑄) shall be 
fulfilled in the event that there are Path P selected by a passenger in equilibrium conditions, 
and alternative path Q. However, there are passengers who do not meet 𝑐𝑐(𝑃𝑃) ≤ 𝑐𝑐(𝑄𝑄) due to 
an assumption of cost factor and function, which are not taken into account. As such, the 
convex quadratic optimization model was developed to minimize error related to those 
passengers 

 
min 1

2
∑ e𝑖𝑖2𝑖𝑖 , (2) 

s.t 𝑐𝑐(𝑃𝑃𝑖𝑖) ≤ 𝑐𝑐(𝑄𝑄𝑖𝑖) + 𝑒𝑒𝑖𝑖 ,    ,∀𝑖𝑖 ∈ 𝐼𝐼, (3) 
 𝛽𝛽1 = 1, (4) 
 𝑒𝑒𝑖𝑖 ≥ 0,      ∀𝑖𝑖 ∈ 𝐼𝐼, (5) 
 𝛼𝛼,𝛽𝛽2,𝛽𝛽3, 𝛾𝛾 ≥ 0. (6) 

 
     Eqn (2) is an objective function to minimize error related to all passengers. Eqn (3) is a 
restriction in which the cost of the path that a passenger selects shall be less than that of an 
alternative path in equilibrium conditions. Eqn (4) means a restriction such that one of 
coefficients shall be fixed to ensure a feasible solution that makes all the coefficients 0 does 
not occur.  
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4  EXPERIMENT RESULTS  

4.1  Data set and estimation result of inverse optimization 

This section describes the implementation of the proposed model for the Seoul Metro 9. Seoul 
Metro 9 has operated both the local and express train since it launched commercial service 
in 2009. As shown in Fig. 2, there are 12 express stations and 18 express-local stations. 
Express and local trains are being serviced alternately every 3 min during the morning peak 
hour.  
     The RP-data of the real train choice of passengers over the interval was acquired through 
the path recovering method of Hong et al. [2] that was applied to two-day sets of Smart Card 
data: one on Monday, May 11 and another on Monday, May 18, 2015. The first data set is 
used for coefficient estimation, and the second data set for validation. 
     Table 1 shows coefficients of cost function per path estimated for 156,257 passengers 
during the peak hours (07:00 ~ 10:00) on Monday, May 11, 2015. The number of passengers 
with 𝑒𝑒𝑖𝑖 more than 0 is 21, 148, which accounts for 13.5%. Coefficient for waiting time is 
1.27, which appeared to be higher than in-vehicle time given less than 100% congestion. If 
the congestion-rate is 100%~150%, in-vehicle coefficient is 1.13, and if the congestion-rate 
is 150% or more, in-vehicle coefficient is 1.34. As such, the cost that the passengers feel is 
increased, even given the same in-vehicle time, if ridership increases. Finally, the coefficient 
of transfer between the local and express train is 4.86, and resistance to transfer appeared to 
be very high. 
 

 

Figure 2:  Map of Seoul metro line 9. 

 

Table 1:  Estimated parameters. 

Parameter 𝛼𝛼 𝛽𝛽1 𝛽𝛽2 𝛽𝛽3 𝛾𝛾 

Coefficient 1.27 1 1.13 1.34 4.86 
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4.2  Performance evaluation  

We conducted transit assignment using the cost function estimated in this study. The MSA-
based Frank-Wolfe algorithm was applied, which is commonly used. Given that ridership of 
the observed train is 𝑓𝑓 and flow of the estimated train is 𝑓𝑓, the deviation of 𝑓𝑓 from 𝑓𝑓 is 
measured in both mean squared error (MSE) and mean absolute error (MAE), as in eqns (7) 
and (8) 

 MSE = 1
|𝐸𝐸|
∑ (𝑒𝑒∈𝐸𝐸 𝑓𝑓𝑒𝑒 − 𝑓𝑓𝑒𝑒)2, (7) 

 MAE = 1
|𝐸𝐸|
∑ | �̂�𝑓𝑒𝑒−𝑓𝑓𝑒𝑒

�̂�𝑓𝑒𝑒𝑒𝑒∈𝐸𝐸 |. (8) 

     Table 2 shows the results of MSE and MAE calculated from the Estimation data set and 
Validation data set. For MSE, the difference in actual number of passengers is approximately 
70 on average, and MAE is 0.09. Therefore, error in the transit assignment model presented 
in this study is approximately 10% or less. 
     Our transit assignment model implemented to Demand Responsive Metro Train Operation 
Planning Software (Dr.METRO) developed by KRRI [6]. Fig. 3 illustrates transit assignment 
results of Seoul metro line 9 using Dr.METRO. Dr.METRO display the ridership of each 
section and train by the color. Red, orange, yellow and green train-path indicate over 200%, 
150%~200%, 150%~100% and less 100% congestion-rate, respectively. In time-space 
window 1 (from 07:20 to 08:40 and from Gayang station to Dongjak), we found almost every 
express and local train’s congestion-rate are over 200%. Congestion-rate in express train is 
continued in time-space window 2, however, that of local train is decreased dramatically. So 
that, passengers prefer express trains. 

Table 2:  MSE and MAE of estimated link flows. 

 MSE MAE 

Estimation set 66.2 0.08 

Validation set 70.9 0.09 

 

 

Figure 3:  Transit assignment result of Seoul metro line 9 in a view of train-path diagram. 
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5  CONCLUSION  
Express and local train service in urban railway provides an opportunity for passengers to 
meet the varying needs of passengers. After successfully launched on Seoul Metro Line 9, 
now the Korean government is considering an express-local train service on existing lines. 
     This study presents a methodology that estimates the coefficient of deterministic path cost 
for transit assignment by applying inverse optimization in the express-local train operation 
conditions. More specifically, our convex quadratic optimization model has estimated the 
coefficient of cost function to minimize passengers who violate the selfish routing condition. 
In addition, we validated the prediction of the model by applying the estimated cost function 
to the Seoul Metro 9. Through validation, it was shown that difference between actual and 
estimated ridership per train appeared to be less than 10%. Therefore, our model can be used 
to adjust train operation plan to reduce load imbalance between the local and express trains. 
     For future work, it would be interesting to develop the transit assignment model whose 
performance is better than the current ones and investigate the methodology that integrate the 
inverse optimization and stochastic model. 
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