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ABSTRACT 
Railway transport consumes large amount of energy and fuel every year. Increasing environmental 
concern and raising prices in diesel fuel and electrical energy has resulted in optimization techniques 
being a must for railway systems. This paper aims to explain the development of a software tool able 
of calculating the optimal consumption speed profile for a train service within a given topology and 
timetable. It also shall provide when and what actions (powering, braking, holding speed or coasting) 
the driver should follow for achieving it. Historically these objectives have been approached using 
computer algorithms based on very simplified models or dynamic programming, resulting in unrealistic 
or restrictively slow frameworks. We propose a really fast and accurate methodology based on Optimal 
Control theory. The problem is formulated as a differential system of equations stating train dynamics 
constraint by track features, as permitted speed or slope value in the various sections. Analytical 
solution for such a system of equations is not suitable due to its strictly non-linearity, being necessary 
the application of fast convergence iterative methods as the Interior Point method based on logarithm 
barrier penalty functions. Several real-life scenarios have been tested using the explained tool and its 
output have been compared with validated results, having achieved a high degree of accuracy and speed. 
Accordingly is valid to conclude that this approach can be used to develop a Driver Advisory System 
for real trains. 
Keywords:  railway, efficiency, optimization, consumption, ECOs (Energy Consumption Optimization 
software), DAS (Driver Advisory System), train dynamics, optimal control, interior point method, 
environmental concern. 

1  INTRODUCTION 
Railway transport operation involves expenses that can be divided between the depreciation 
of the rolling stock and its operational cost, including staff salaries, maintenance and 
energy/fuel consumed. All these expenses are mandatory along operational life and hardly 
diminishable except for the consumption that is likely to be reduced using an efficient driving 
strategy. 
     Railway operators are recently investing in efficient driving systems that allow them to 
reduce this factor by using DAS (Driver Advisory Systems) devices, usually a computer 
based system with a screen monitor where an optimal speed profile is shown to the driver in 
order to keep train velocity as close as possible to calculated optimal speed at any moment 
while satisfying a time schedule. 
     Calculation of these optimal speed profiles is a complex task due to the strictly non-
linearity nature of train dynamics differential equations, being necessary the application of 
fast convergence iterative methods for solving it. 
     One of the most mature and fastest to converge among them is the Interior Point method 
based on logarithm barrier penalty functions. This method can be found in Ipopt package 
which implements an interior point line search filter method algorithm able to find feasible 
solutions to nonlinear problems. 
     Prior to apply any iterative solver the continues-time problem must be transformed into a 
nonlinear optimization problem using an appropriate discretization method. 
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     An Orthogonal Collocation discretization has been chosen to divide the system in a 
number of finite elements containing piecewise low-order polynomial representations of the 
state and control variables in each element, allowing a simultaneous approach for this 
optimization problem. 
     This method evolves from sequential approaches for discretization by considering the 
dynamic optimization problem as a multi-period system where the periods themselves are 
represented by finite elements in time and can be considered as a special case of implicit 
Runge–Kutta methods, where their concepts and properties apply directly. 
     Using this formulation has a number of pros and cons. The problem size increases in direct 
proportion to the number of finite elements and to the polynomial degree. On the other hand, 
this formulation provides a great deal of sparsity and structure, along with efficient sparse 
linear solvers available allow to find a solution efficiently. 
     To evaluate this methodology, the results obtained are checked by two ways: (i) using the 
already validated third party CITEF's tool Hamlet Analysis Suite that has been used in more 
than one hundred electrical railway projects, and (ii) comparing with real data provided by 
some major railway operators. 
     The main contributions of this paper are: (i) the development of a train dynamics model 
that captures the real behaviour of any train, (ii) the development of a computer framework 
based on Ipopt that allows fast finding of accurate solutions, and (iii) the validation of the 
outputs using real life operation data and third-party simulation tools. 
     The rest of the paper is organized as follows. In Section 2 previous studies are evaluated, 
in Section 3 a mathematical background for interior point method is briefly described, in 
Section 4 the train model is developed, in Section 5 the applied methodology is introduced 
and in Section 6 the results obtained are analysed. Finally, Section 7 draws the conclusions 
of this tool and presents future research. 

2  LITERATURE REVIEW 
Energy consumption optimization in vehicles has received growing attention in recent years. 
Increasing use of railway transportation for both passengers and freight at world scale has 
focused the attention of railway operators in decreasing energy consumption, in an attempt 
to reduce operational costs and become more environmentally friendly. 
     Investing in any optimal driving development accounts due to large scale energy 
consumption done by them along their operational life, therefore its reduction becomes a 
profitable investment in the short term. 
     There are many studies focusing on the energy efficient driving of trains. The earliest 
research was based on simplified models, based in the assumption of ignoring speed limits 
or slopes in the lines. Then those models were reformulated to take gradients and speed limits 
into consideration, but still used a very simplified train dynamic simulation. Also, efforts 
were applied into finding the coasting position by search algorithms, including genetic ones. 
     In recent years, various algorithms have been successfully applied to efficient operation 
of railway trains from energy viewpoint. Rodrigo et al. [1] remark about the value on the use 
of regeneration energy; a Lagrangian multipliers method was proposed to solve the problem 
by optimizing the speed profile. Huang et al. [2] propose the use of a multi-population genetic 
algorithm to optimize the train operation for multiple interstation’s, taking into account both 
the trip time and the driving strategy. Cabrera-Montie et al. [3] go one step further and 
propose the use of dynamic programming method for solving this problem for a truck in a 
road, although their conclusions are totally valid for railway, as demonstrated in later studies 
carried out by CITEF investigation group. Larrañaga et al. [4] aim in the comparison between 
a direct method and an indirect method used to determine an optimal speed profile. They also 
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use an improved train model for their tests. Ben-Chaim et al. [5] propose an analytical method 
of evaluating vehicle fuel consumption under different operating conditions, as cruising at 
constant speed and acceleration. Their conclusions are valid for large diesel engines used in 
some railway locos. 
     All the above papers present some problems that make them unsuitable for developing a 
general optimizing framework for railway trains. Such a general framework must meet two 
essential requirements, being very fast in order to be implemented as a DAS on-board device 
and being very accurate in order to be used as an office analysis tool to make decisions about 
optimal trip time and expected savings. 
     In [1] a feasible method is proposed but it finally relies in Matlab optimization package, 
making it slower and third-party dependant. In [2] the authors make use of simplified 
assumptions for their calculations. In [3] an interesting approach to dynamic programming is 
presented. Dynamic programming always guarantees to find an optimal absolute minimum 
solution, but it is a slow method with a solving speed directly proportional to the complexity 
and grid size used for solving the problem. In [4] direct and indirect methods are compared. 
The direct method describes train model in detail, but discretization of the problem is done 
using a naive Euler method for then relying in third party programming language AMPL. 
This decision reduce accuracy and make algorithm third party dependant. 
     Finally, it is noteworthy that most of the previous studies ignores the influence of trip time 
on the energy consumption, which must be taken into account as an average consumption 
applied all over the trip time. This energy is used for auxiliary system of the train, as electrical 
engine refrigeration, air conditioning or lighting. 

3  MATHEMATICAL BACKGROUND 
Optimization problems can be faced from different solving strategies. In the last years 
growing interest in optimization methods has led to the development of interior point 
methods for large-scale nonlinear continuous systems, based in barrier logarithmic penalty 
functions. These methods has been implemented using efficient algorithms together with 
widely available multi-core processors, resulting in several mature open and proprietary 
libraries able to solve the problem while fast converging to a global solution. 
     One of the most popular state of the art framework is IPOPT, short for "Interior Point 
OPTimizer”, which can be used to solve general nonlinear programming problems of the 
form: 

min
௫∈ℝ೙

  𝑓ሺ𝑥ሻ,                                                            (1) 

 
𝑠. 𝑡.    𝑔௅ ൑ 𝑔ሺ𝑥ሻ ൑ 𝑔௎,                                                    (2) 

 
      𝑥௅ ൑ 𝑥 ൑ 𝑥௎,                                                           (3) 

 
where x ∈ ℝ௡  are the optimization variables (possibly with lower and upper bounds, 
xL∈ሾെ∞, ൅∞ሻ௡ and xU∈ሺെ∞, ൅∞ሿ௡), f: ℝ௡ → ℝ is the objective function, and g: ℝ௡ → ℝ௠, 
with m ≤ n, are the general nonlinear constraints. The functions f(x) and g(x) can be linear or 
nonlinear and convex or non-convex (but should be twice continuously differentiable). The 
constraints, g(x), have lower and upper bounds, gL∈ሾെ∞, ൅∞ሻ௡ and gU∈ሺെ∞, ൅∞ሿ௡. 
     Ipopt implements a primal-dual interior point method that uses a line-search based on 
filter method. It has been designed to exploit 1st and 2nd derivative (Jacobians and Hessians). 
     The main features of Ipopt are that it is open software released under the EPL license 
(although it may use some proprietary sparse linear solvers), it can be called from various 
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modelling environments (C++ and Python frameworks available) and if no Hessians are 
provided, it will be able to approximate them using a quasi-Newton method, specifically a 
BFGS update. 
     Initially, interior-point methods were developed using exact penalty merit functions to 
enforce progress toward the solution. In recent years filter methods has been proposed, 
offering an alternative to merit functions, as a tool to guarantee global convergence in 
algorithms for nonlinear programming and to allow convergence from poor starting points. 
The underlying concept is that trial points are accepted if they improve the objective function 
or improve the constraint violation instead of a combination of those two measures defined 
by a merit function. 
     More recently, this filter approach has been adapted to barrier methods in a number of 
different ways, as considering a trust region filter method that bases the acceptance of trial 
steps on the norm of the optimality conditions or using heuristics based on the idea of filter 
methods. In the other hand, Ipopt was designed on a primal-dual interior-point algorithm with 
a filter line-search, specifically a primal-dual barrier method to solve nonlinear optimization 
problems of the stated above form. Ipopt performance compares favourable to other state of 
the art nonlinear optimization packages as KNITRO and LOQO. 
     In [6] a more comprehensive explanation about interior point method implemented in 
Ipopt package and all its mathematical approach can be consulted.  

4  MODEL DESCRIPTION 
Train cinematics will be subject to the next continues-time state equations: 
 

𝑣ሺ𝑡ሻ ൌ
ௗ௫ሺ௧ሻ

ௗ௧
,                                                             (4) 

 

𝑎ሺ𝑡ሻ ൌ
ௗ௩ሺ௧ሻ

ௗ௧
,                                                             (5) 

 

𝑗ሺ𝑡ሻ ൌ
ௗ௔ሺ௧ሻ

ௗ௧
,                                                             (6) 

 
where x(t) denotes the position, v(t) the speed, a(t) the acceleration and j(t) the jerk. 
     On the other hand, train dynamics states that there are two resistive forces that affects to 
train movement. The first resistive force is the air resistance force that always opposes to 
movement and is expressed by well-known Davis formula:  
 

𝑅௔௜௥ሺ𝑡ሻ ൌ 𝐾஺ ൅ 𝐾஻ ൉ 𝑣ሺ𝑡ሻ ൅ 𝐾஼ ൉ 𝑣ሺ𝑡ሻଶ,                                      (7) 
 
where KA, KB and Kc are the drag coefficients. 
     The second resistive force is the slope force and it may oppose or favor train movement 
depending of the positive (uphill) or negative (downhill) value of the slope: 
 

𝑅௦௟௢௣௘ሺ𝑡ሻ ൌ 𝑔 ൉ 𝛼ሺ𝑡ሻ ൉ 𝑚,                                                     (8) 
 

where g is the gravitational acceleration, m is the static mass of the train and α(t) is the slope 
of the track in ‰ units (per mille), that is one vertical millimetre per horizontal meter. 
     Applying a force balance to the train dynamics equations: 
 

𝐹௧௥௔௜௡ሺ𝑡ሻ ൌ ∑ 𝐹௜ ൌ 𝐹௠௢௧ሺ𝑡ሻ െ 𝑅௔௜௥ሺ𝑡ሻ െ 𝑅௦௟௢௣௘ሺ𝑡ሻ,                               (9) 
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𝑀 ൉ 𝑎ሺ𝑡ሻ ൌ 𝐹௠௢௧ሺ𝑡ሻ െ 𝐾஺ െ 𝐾஻ ൉ 𝑣ሺ𝑡ሻ െ 𝐾஼ ൉ 𝑣ሺ𝑡ሻଶ െ 𝑔 ൉ 𝛼ሺ𝑡ሻ ൉ 𝑚,             (10) 

 
where M is the dynamic mass of the train, resulting from adding rotatory mass to static mass 
of the train and Fmot is the force applied by the engines of the train, positive values for 
powering and negative values for braking. 
     All the above equations yield to the next constraints: 
 

൜
𝑥ሺ0ሻ ൌ 0,
𝑥ሺ𝑇ሻ ൌ 𝐿,

                                                             (11) 

 

൜
𝑣ሺ0ሻ ൌ 0,
𝑣ሺ𝑇ሻ ൌ 0,

                                                             (12) 

 

𝑣ሺ𝑡ሻ ൑ ൝
𝑉௠௔௫ଵ     𝑖𝑓 𝑥ሺ𝑡ሻ ൑ 𝑋ଵ,        

 ⋮                                      
 𝑉௠௔௫ே     𝑖𝑓 𝑥ሺ𝑡ሻ ൑ 𝑋ே ൌ 𝐿,

                                          (13) 

 

𝛼ሺ𝑡ሻ ൑ ൝
𝛢௠௔௫ଵ     𝑖𝑓 𝑥ሺ𝑡ሻ ൑ 𝑌ଵ,        

 ⋮                                      
 𝛢௠௔௫ே     𝑖𝑓 𝑥ሺ𝑡ሻ ൑ 𝑌ே ൌ 𝐿,

                                          (14) 

 
|𝑗ሺ𝑡ሻ| ൑ 𝐽ெ஺௑,                                                        (15) 

 
െ𝐴ௌ஻ ൑ 𝑎ሺ𝑡ሻ ൑ 𝐴ெ஺௑.                                                  (16) 

 
     The meaning of all the constants used in eqns (11) to (16) can be consulted in Table 1 
below. 
     The behaviour of the electrical engines can be described as a set of hyperbolic curves 
limited by available adhesion. Next equations show the tractive and brake effort curves used 
by the model as constraints depending of train speed: 
 

𝐹்ሺ𝑡ሻ ൑

⎩
⎪
⎨

⎪
⎧   𝐹்_௠௔௫             𝑖𝑓 𝑣ሺ𝑡ሻ ൑ 𝑉ଵ,        

ி೅_೘ೌೣ൉௏ଵ

௩ሺ௧ሻ
         𝑖𝑓 𝑣ሺ𝑡ሻ ൑ 𝑉ଶ,     

ி೅_೘ೌೣ൉௏ଵ൉௏ଶ

௩ሺ௧ሻమ     𝑖𝑓 𝑣ሺ𝑡ሻ ൑ 𝑉ெ஺௑.

                                   (17) 

 
 

𝐹஻ሺ𝑡ሻ ൑ ൞

0                   𝑖𝑓 𝑣ሺ𝑡ሻ ൑ 𝑉ଷ,         
𝐹஻_௠௔௫          𝑖𝑓 𝑣ሺ𝑡ሻ ൑ 𝑉ସ,         
ிಳ_೘ೌೣ൉௏ସ

௩ሺ௧ሻ
      𝑖𝑓 𝑣ሺ𝑡ሻ ൑ 𝑉ெ஺௑.    

                                       (18) 

 
     The meaning of all the constants used in eqns (17) and (18) can be consulted in Table 1 
below. Note that electrical engines loss braking capacity at low speed due to its intrinsic 
design as can be observed from brake effort curve (18). This is automatically counterbalanced 
by control unit in real trains by using pneumatic brake blending. Therefore this effect must 
be considered for calculations in the model. 
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Table 1:  Train constants. 

Constant: Meaning: 

L Trip distance. 
T Available trip time. 

X1 … XN Positions where speed profile changes. 
Y1 … YN Positions where gradient profile changes. 
Vmax1 … Speed steps belonging to the speed profile. 
Amax1 … Gradient steps belonging to the gradient profile. 
JMAX Maximum jerk. 
AMAX Maximum powering acceleration. 
ASB Maximum service brake deceleration. 
VMAX Maximum train speed. 
FT_max Maximum tractive effort available. 
FB_max Maximum braking effort available. 
V1 … VN Speeds where effort curves change behaviour. 

 
     It is necessary to mention that an extra constraints must be introduced in the model to 
avoid engines power and brake at the same time: 
 

𝐹௠௢௧ሺ𝑡ሻ ൌ 𝐹்ሺ𝑡ሻ െ 𝐹஻ሺ𝑡ሻ,                                                (19) 
 

𝐹்ሺ𝑡ሻ ൉ 𝐹஻ሺ𝑡ሻ ൌ 0.                                                        (20) 
 

     Finally it is necessary to define the objective function to minimize, in this case the 
consumption: 

 

𝑐ሺ𝑡ሻ ൌ ׬ 𝑝ሺ𝑡ሻ ൉ 𝑑𝑡
்

଴ ,                                                      (21) 
 

where c(t) denotes the consumption and p(t) denotes the power used in the engines. Now is 
the moment to differentiate between regenerative and rheostatic engines. Regenerative 
engines are able to send energy generated during braking back to the catenary so it can be 
used by other train or stored in the electrical substation if an energy storage system is 
available. In the other hand, rheostatic engines get rid of braking generated energy dissipating 
it as heat in a resistor bank 

𝑐௥௘௚ሺ𝑡ሻ ൌ ׬ 𝐹௠௢௧ሺ𝑡ሻ ൉ 𝑣ሺ𝑡ሻ ൉ 𝑑𝑡
்

଴                                          (22a) 
 

𝑐௥௛௘ሺ𝑡ሻ ൌ ׬ 𝐹்ሺ𝑡ሻ. 𝑣ሺ𝑡ሻ ൉ 𝑑𝑡
்

଴ .                                           (22b) 
 

     From all the above exposed it is easily concluded that the control variables of this model 
are the tractive and brake efforts, FT(t) and FB(t), so now an optimal control formulation can 
be presented by using objective function defined in (21): 
 

min
ி೅ሺ௧ሻ,ிಳሺ௧ሻఢሾ଴,்ሿ

𝑐ሺ𝑡ሻ ൌ  min
ி೅ሺ௧ሻ,ிಳሺ௧ሻఢሾ଴,்ሿ

׬ 𝐹ሺ𝑡ሻ. 𝑣ሺ𝑡ሻ ൉ 𝑑𝑡
்

଴ .                       (23) 
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     Again, it is remarkable that F(t) shall be Fmot(t) or FT(t) depending of the rheostatic or 
regenerative nature of the system. Also, note that above formulation allows the insertion of 
electro-mechanical performance coefficients if available, minoring the energy regenerated 
and increasing the energy used for motion. 
     Finally, there is a last significant energy consumption due to auxiliary devices, as engine 
refrigeration or air conditioning 
 

׬ 𝑃௔௨௫ ൉ 𝑑𝑡 ൌ
்

଴  𝑃௔௨௫ ൉ 𝑇.                                                (24) 
 

     This one cannot be reduced but it affects global calculations, so it should be considered in 
the model. It is defined by an average constant power Paux along travel time. 

5  METHODOLOGY 
Once the train model has been exposed, next step consists in using it within Ipopt package. 
Ipopt has interfaces to several programming languages as C/C++ or Python, third party 
algebraic modelling languages as AMPL and also allows other frameworks link to it to add 
an extra layer with additional features. 
     Interfacing Ipopt directly from a programming language is a very hard task due to tight 
data insertion format employed. It is expected that all the discretized state equations and 
constrains, the initial values, and first and second derivatives of state and control variables 
matrixes are provided prior to solve the problem as the next input data: 

 Number of variables and constraints. 
 Variable and constraints bounds. 
 Initial values for the primal x variables and for the multipliers (only required for a 

warm start option). 
 Number of nonzeros and sparsity structure in the Jacobian of the constraints. 
 Number of nonzeros and sparsity structure in the Hessian of the Lagrangian 

function. 
 Objective function, f(x) and its gradient, ∇fሺxሻ. 
 Constraint function values, g(x) and its Jacobian, ∇gሺxሻT. 
 Hessian of the Lagrangian function, σf∇2fሺxሻ൅ ∑λi∇2giሺxሻ, i∈ሾ1,mሿ. 

 
     Therefore, calculating all these inputs manually is a time consuming and error prone task 
that only should be done for very simple problems. In this case, the model must be discretized 
as a multi-period problem, where the variables and equations increases accordingly with the 
discretization method chosen. For this kind of models, several thousands of variables and 
constraints are expected, so interface directly with a programming language must be 
discarded. 
     Fortunately, there are several libraries that calculate the above input using a more 
understandable input entry and freeing developers of most of complex math. These libraries 
directly interface with Ipopt, either calling to its binary application directly or statically 
linking with it. 
     This project uses Python SciPy packages for fast prototyping and C++ CasADi library for 
high performance code. Their main features are that they provide discretization methods 
ready to use and an automatic differentiation method to calculate gradient, Jacobian and 
Hessian matrixes. It is remarkable that all this software is open source and free to use for both 
research and commercial projects. 
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5.1  Model insertion 

The train model shall be defined by eqns (4) to (24). All these equations must be included 
into the library and the model parameters must be set to match with real train. 
     The first issue that must be solved is that the model is a subject to time one, while all the 
track data is subject to distance. It is easy to transform the model into a continuous-distance 
system using eqn (4) in the rest of the equations. Especial care must be taken in boundaries 
of the problem with division by zero issues, taking into account that now the velocity variable 
is in the denominator of other terms. 
     Once the model is stated as a continuous-distance nonlinear differential equations system, 
it is straightforward to insert the speed profile and gradient profile as distance dependant 
constraints. Most operators apply speed limits while any part of the train is within, so they 
should be adjusted to affect all train length if necessary. 
     Also, changing the model to distance dimension prepares it to be easily modifiable to add 
new resistance forces if they affect appreciably the dynamics calculus, per example low 
adhesion areas, tunnel resistance or curve resistance. This last one is usually negligible for 
most trains except monorail train and big freight trains where its effects are really noticeable. 

5.2  Discretization 

Once the train dynamics model and all its configuration parameters have been inserted into 
the library, the next step is to choose a suitable discretization method. The best option for this 
kind of optimal control problems is to discretize by direct collocation with orthogonal 
polynomials method. 
     Direct collocation essentially trades nonlinearity for problem size, transforming the 
original problem into another larger but less nonlinear and with a sparsity structure that can 
be exploited efficiently by adding more degrees of freedom. 
     Usually collocation methods use Gauss-Legendre or Radau roots as collocation points. In 
this paper Radau roots are used because they allow large time steps and present a smaller 
truncation error, as it can be deduced of its properties: 

 Collocation methods are A-stable, and both Gauss–Legendre and Radau collocation 
are AN-stable, or equivalently algebraically stable. As a result, there is no stability 
limitation for stiff problems. 

 Radau collocation has stiff decay. Consequently, large time steps are allowed for 
stiff systems that capture steady state components and slow time scales. 

 Both Gauss–Legendre and Radau collocations are among the highest order methods 
and their truncation error are O(h2k) for Gauss–Legendre and O(h2k-1) for Radau, 
where k is the polynomial degree. 

     The number of finite elements and the number of collocation points (related with the 
degree of the polynomial) must be chosen so it is possible to solve the problem with high 
accuracy but avoiding to oversize the problem increasing solving time and not contributing 
to accuracy. Heuristics and experience allow to choose the right values considering distance 
to travel and number of steps in the profiles. 
     It is noteworthy that the continuous set of discretized values do not have to be necessarily 
of fixed step. This is an interesting property that allows to add more discretization points in 
areas where the static speed profile or the gradient profile change, using less finite elements 
and resulting in smaller and faster to solve problems. 
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5.3  Solving and results 

Once the discretization method has been applied on the model, Ipopt is ready to solve the 
problem and to provide the optimal speed profile and the state variables values as outputs. 
     Firstly the available travel time must be set so all the equation yields to it. The available 
travel time is chosen by railway operators and depends of a lot parameters as distance to 
travel, desirable speed and possible delay penalizations. 
    Then, the initial value for all the state variables must be set. Interior point methods are very 
sensitive to this configuration, converging slower if improper values are chosen or even 
becoming infeasible in extreme cases. It has been a normal practise for this kind of problems 
to use the average speed as initial values for velocity and its corresponding calculated timing 
for time. 
     By experience faster solutions can be obtained using the calculated state variables for the 
minimum time problem as initial values, where a train must run the travel distance as fast as 
permitted by static speed limits constrains. This can be done in an efficient way by 
approximate simulation as a previous stage. 
     Besides obtaining the optimal speed profile, the algorithm is prepare to calculate the 
optimal driving strategy at any moment that can be used to implement a DAS device. 
    Based in the physics principle of avoiding transitory regimes due to the loss of performance 
while they take place, four driving strategies have been defined: maximum powering, 
maximum braking, coasting and speed holding. 
     For maximum powering and braking driver sets train controls to apply either all the power 
of the engines or the maximum service brake. For speed holding strategy driver cruises at 
constant speed either powering or braking enough, while for coasting strategy driver stops 
applying any effort. 
     The main advantage of just having four pure strategies is that they are common for all 
rolling stock in service and understandable by any driver of any country. They are also 
applicable without further modifications in train or driving desk. 

6  OUTCOMES 
All the tests in this section have been carried out with a laptop mounting an Intel® Core™ i5-
3210M @2.5 GHz and 4 GB DDR3 RAM running Windows 7 OS without any kind of tweak 
or overclocking to enhance performance. Even using this outdated device, all the tests have 
been solved in times under 12 seconds depending of track distance and complexity.      
     The tests have been done using a high-speed train model configured as indicated in Table 
2 and Fig. 1 below. 
 

Table 2:  High speed train model. 

Coefficient Value Coefficient Value Coefficient Value 

L (km) 170 AMAX (m/s2) 0.6 FT_max (kN) 198 
T (mm:ss) 51:34 ASB (m/s2) 0.6 FB_max (kN) 180 
VMAX (km/h) 330 JMAX (m/s3) 1.0 PAUX (kW) 130 
LTRAIN (m) 200 KA (N) 2885 μelect-mech 0.85 
m (t) 357 KB (N/(m/s)) 96.12 μreg 0.95 
M (t) 367 KC (N/(m/s)2) 6.3504 - - 
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Figure 1:  Traction and braking effort curves. 

     Where μelect-mech denotes electro-mechanical performance, including wheel-rail friction, 
gear train efficiency and catenary losses, and μreg denotes regenerative brake performance. 
     Fig. 2 shows the minimum time speed profile used as initial state while Fig. 3 shows the 
calculated optimal speed profile for given time schedule. 
     The figure shows speed limits, heights map, train speed and features the driving strategies 
represented as a colours schema over x-axis where green stands for powering, red for braking, 
grey for coasting and cyan for holding speed. 

 

Figure 2:  Minimum time problem. 
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Figure 3:  Minimum energy consumption problem. 

     Observing the results is deduced that increasing travel time 22.8% the energy 
consumption reduces 31.6%. This is a stunning result valid only for the worst case, while 
normal driving employs longer travel times. Anyway, by experience a reduction of around 
10% is expected using the right driving strategies for the same travel time. 
     As can be deduced this method works by trading travel time for energy saving in an 
efficient way. Here the reduction comes from using the coasting strategy in different sections 
and maintaining it along several kilometres taking advance of gradient profile.  
     

 

Figure 4:  Optimal expected and real train consumptions. 
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7  CONCLUSIONS 
The present paper demonstrates how a general algorithm has been successfully developed for 
solving the minimum energy consumption problem yield to time schedule, speed limits and 
gradients constraints of the track, and most important, how this can be solved efficiently. 
     The next complex requirements have been satisfied: 

 Fast calculus in the order of seconds. 
 High accuracy in estimated consumption and saving. 
 Electric and diesel-electric detailed train modelling available. 
 Relevant train features and track elements affecting consumption included. 
 Able of running in any normal computer carried onboard. 
 Able of recalculating an optimal speed profile if necessary due to delays. 

 
     Also, a very realistic train model has been developed that can be set using the information 
provided by the technical data sheet of any train, no matter its type or configuration. 
     This algorithm has been the base of ECOs tool, consisting in a framework specifically 
created from scratch for fulfilling all the above requirements. This tool has been designed to 
both calculate the expected energy saving prior to make any decision in office analysis or as 
a DAS main core within an on-board device. 
     Lastly, all the outputs obtained by the tool has been carefully validated through the use of 
a commercial railway electrical simulator suite and employing real information when the logs 
were available, as in Fig. 4, where green line is expected and red line is real consumption. 
     The error found was under 0.5% in the case of the simulator tool and under 5.0% in the 
case of real train data. The simulation error is due to using a different integrator method while 
the real life error is caused by natural human driving and normal mismatches between 
theoretical model and real train. 
     Future research is focus in improving fuel consumption estimation for diesel-electric 
trains, using a more realistic model that weighs the internal combustion engine speed change 
due to acceleration or brake. Currently implemented diesel model calculates fuel 
consumption by applying efficiency coefficients to the joints between the diesel and the 
electrical. 
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