
Safety requirements-oriented interfaces
environment scheme for safety-critical system

Y. Li, J. Guo, Y. Yang, G. Xie & Y. Su
School of Information Science and Technology,
Southwest Jiaotong University, China

Abstract

With the increasing complexity of safety-critical system and component-based
development approach is widely used, focusing on the problem that the system
safety is affected directly by the interfaces failure of its modules, the disadvantages
of current safety scheme are analyzed, and an interfaces scheme is presented to
ensure safety on system level. First, according to the interactions between safety-
critical system and environment, an environment interfaces failure scenario is
defined, then its effects to safety-critical system are analyzed. Second, to ensure
the system safety requirements, composing the module and its environment, a
safety requirements-oriented interfaces environment scheme is presented, which
aims to avoid the interfaces faults that could cause a system failure and provide
maintenance information when system violates safety requirements. Third, an
identification algorithm to generate the safety requirements-oriented interfaces
environment is presented based on model checking technology. Finally, taking the
urban rail transit computer based interlocking system as an example, the safety
requirements-oriented interfaces environment of a signal module is analyzed with
the algorithm implemented by SCADE. The result is completely consistent with
the field practical experience, which shows the feasibility and effectiveness of this
scheme.
Keywords: safety-critical system, safety requirements, environment interfaces
failure, safety requirements-oriented interfaces environment, computer based
interlocking.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

doi:10.2495/CR160371

This paper is part of the Proceedings of the 15 International Conference th

on Railway Engineering Design and Operation (CR 2016)
www.witconferences.com

1 Introduction

Safety-critical system (SCS) is a system whose failure could result in human
death, significant property loss or environment damage [1]. Component-based
development which composing smaller independently developed components into
larger components assemblies is widely used in the complex SCS development.
Modules is the basic notion of component and components assemblies, which
affects the system safety directly. The interfaces fault of a module can easily
cause a system failure. For example, one important cause of the Three Miles
Island nuclear event in 1979, is an interface which gathered environment state
mistakenly [2]. The identification of relation of module interfaces and system
safety can benefit the SCS safety analysis, but since the concurrency, real-
time, complexity and variety of interactions with environment, there are many
challenges facing this task.

The traditional safety analysis methods, like FTA, ETA, FEAM, OSHA, can be
used to deduce the fault modes of modules, but are incapable of analyzing the
interfaces behavior. Elmqvist J and Nadjm-Tehrani S presented a safety interfaces
scheme (SIS) to guarantee SCS safety on component level. SIS presents a safety
condition that SCS should assure in a specific fault scenario, depending on faults
mode library. This scheme has been adopted well in Swedish strategic research
foundation project and the national aerospace research program NFFP [3, 4].
Elmqvist and Nadjm-Tehrani [5] improved the scheme to analyze residual risks
quantitatively. Ying and Xu [6] extended the scheme from single and double faults
mode to multiple faults mode. Since faults modes are always accumulated during
system operation phase, the exhaustiveness of identification of faults modes will
affect the completeness of safety interfaces, and SIS cannot be applied well to
guide interface design or system integration before system put into use.

This paper presents a safety requirements-oriented interfaces environment
(SRoIE) scheme to ensure SCS safety on system level. SRoIE identifies the
interfaces that should be ensured for a specific safety constraints, based on
system functional model and safety properties. A algorithm to generate SRoIE
is presented, including a refinement algorithm for keeping the interfaces set of
SRoIE minimal and critical. At last, a module of urban rail transit computer based
interlocking system is taken as an example to show the feasibility of this scheme.

2 Module and environment interfaces fault scenario

Modules gathers environment states through input interfaces, based on desired
functional requirements, provides data or control commands to environment as
outputs through output interfaces. The correctness of input interfaces will directly
affects the compute result and system safety of SCS.
Definition 1. A module is a tuple:

Σ = (I,Q,Q0,∆, T,O) (1)

412 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

where: I is input interfaces, and the input domain is denoted by VI ; Q is finite
states set; Q0 ⊆ Q is initial states set; ∆ is finite labels set; T ⊆ Q ×∆ × Q is
transition set; O is output interfaces set, and the output domain is denoted by VO.

Modules keep uninterrupted interaction with environment, and perform its
functionality under transition constraints. This process is defined as a composition
of module and its environment.
Definition 2. Let Σ′ = (I ′, Q′, Q′

0,∆
′, T ′, O′) be a module, Σ′′ = (I ′′, Q′′, Q′′

0 ,
∆′′, T ′′, O′′) be an environment, the composition of module and its environment is
denoted:

ΣC = Σ′ ‖ Σ′′ (2)

where: IC = I ′′, QC = Q′ ∪ Q′′, QC0 = Q′
0 × Q′′

0 , TC = T ′ × T ′′,
OC = O′ ∪O′′ −O′ ∩O′′, V ′

I ⊆ V ′′
O .

In general, the failure caused by invalid inputs can be avoid by taking design
methods, such as fault tolerance, but the consistency of interfaces and environment
states is difficult to detect. The inconsistency is an environment interfaces fault
scenario and could cause a system failure.
Definition 3. Let vi be an environment state of a module, vfi be the input result

of vi, environment interface fault (EIF) scenario is denoted by Σ
(
vi/v

f
i

)
, where

vi, v
f
i ∈ VI , vi 6= vfi .

The EIF represents an inconsistency of inputs and environment states. Two-
tuples (Ii, vi) ∈ I × VI indicates the input of interface Ii is vi, then an interaction

between SCS and environment is denoted by µi =
num⋃
k=1

(Ik, vk), where num is

the total interfaces numbers of module. The interfaces whose failure could cause
system violates a safety constraint ψ are called key interfaces, denoted by KIψ .
Definition 4. safety verification model of SCS is a function:

f : (Σ ‖ Σ′′, vi, vo, ψ) −→ (true, false) (3)

where: Σ is a module; Σ′′ is the environment of Σ; vi ∈ VI is environment inputs;
vi → vo and vo ∈ Vo; ψ ∈ Ψ is a safety constraint that SCS needed to be verified.

As different environments employ different safety requirements, safety analysis
must consider the concrete environment that the system placed in, Safety
verification model verifies that, in Σ′′, Σ whether satisfy ψ with vi and its output
vo or not. ∀vi, f (Σ ‖ Σ′′, vi, vo, ψ) = true means Σ satisfies ψ in Σ′′, denoted by
(Σ ‖ Σ′′) |= ψ.

3 SRoIE scheme

When SCS is in Σ
(
vi/v

f
i

)
, for vi, v

f
i may both be in input domain, SCS fails to

identify these consistency, then performs its function with vfi . The safety constraint
which is satisfied in normal environment may be violated in EIF scenario.

Computers in Railways XV: Railway Engineering Design and Operation 413

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

3.1 Safety in EIF scenario

The environment of SCS includes gathering environment ΣG and working
environment ΣW , and ΣW determines the computation result of SCS is safe or
not.When input interfaces get data properly, ΣG = ΣW . But if the interfaces
malfunction: Σ

(
vi/v

f
i

)
, ΣG 6= ΣW . In this situation, SCS performs its functional

requirements based on vfi , but ΣW verifies the safety based on vi, then equation
(3) is changed into:

f :
(

Σ ‖ ΣW , vi, v
f
i → vo, ψ

)
−→ (true, false) (4)

An underlying risk is posed that SCS performed its functional requirements
successfully, and ensured the safety in ΣG, but ΣW cannot tolerate SCS outputs,
then violates the safety requirements, i.e. if ∃vi, vfi ∈ VI , ∃ψ ∈ Ψ, Σ

(
vi/v

f
i

)
,

then f
(

Σ ‖ ΣG, vfi , v
f
i → vo, ψ

)
= true, but f

(
Σ ‖ ΣW , vi, v

f
i → vo, ψ

)
=

false.
For this problem, this paper presents a safety requirements-oriented interfaces

environment (SRoIE) scheme: not only do SCS need to ensure the functional
requirements, but also modules interfaces.
Definition 5. A SRoIE of a module is a tuple

〈
ψ,CIψ

〉
, where: ψ is a safety

constraint; CIψ is the core interfaces set of ψ, where CIψ =
⋃
Bi, Bi ∈ KIψ ,

andBi is the minimal set inKIψ , i.e. ∀Aj ∈ KIψ , ifBi
⋂
Aj 6= φ, thenAj * Bi,

i, j ∈ N+.
The core interfaces set is monotone with respect to set inclusion, i.e. ∀Λ1,Λ2 ∈

KIψ : Λ1 ⊆ Λ2 ⇒ (Λ1 is core interfaces set⇒ Λ2 is core interfaces set) .
SRoIE presents a minimal interfaces combination which could affect a specific
safety constraint, and indicates implicitly a relation between interfaces and system
safety. For example, if the key interfaces set of ψ is {{I1, I2, I3}, {I1, I2, I3, I5},
{I2, I3}, {I4, I5, I6}, {I5, I6}}, then the SRoIE is (ψ, ((I2, I3), (I5, I6))), which
implies that if {I2, I3} or {I5, I6} fails, ψ will be violated.

Through ensuring the SRoIE, safety in working environment can be ensured,
and when a safety constraint is violated, maintenance information is provided that
the states of interfaces corresponding to the constraint should be checked to prevent
interfaces fault.

3.2 SRoIE algorithm

SRoIE can be deduced through model checking which is widely used in SCS
to verify whether system satisfies a specific constraint or not [7, 8]. In model
checking framework, the gathering environment and working environment can
be constructed in SCS functional model, then the fault tolerant ability of the two
environments can be analyzed respectively by equations (5) and (6).

R1 = f
(

Σ ‖ ΣG, vfi , v
f
i −→ vo, ψ

)
(5)

414 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

R2 = f
(

Σ ‖ ΣW , vfi , v
f
i −→ vo, ψ

)
(6)

¬R1 ∨ R2 = false means ψ is satisfied in EG, but violated in EW . The
counterexample µn returned by model checking can be divided into gathering
environment case µGn and working environment case µWn , µGn ∪ µWn = µn.
Meanwhile, ∃i, j ∈ N , 1 ≤ i, j ≤ num, ∀ (Ii, vi) ∈ µWn , ∃1 (Ij , vj) ∈ µGn ,Ii =
Ij , and ∀k ∈ N , 1 ≤ k ≤ num, if k 6= j, then Ik 6= Ij .
∃i, j ∈ N , 1 ≤ i, j ≤ num,

(
IGi , v

G
i

)
∈ µGn ,

(
IWi , vWi

)
∈ µWi , if IGi = IWi ,

vGi 6= vWi , then ∪IGi is the key interfaces set of the safety constraint. SRoIE
can be refined through the key interfaces set, and the SRoIE generation algorithm
is shown in algorithm 1. Utilizing system functional model and safety constraint
set, algorithm identifies the key interfaces set for every safety constraint by
KIGeneration algorithm, then SRoIE is refined by CIRefinement algorithm.

Algorithm 1 SRoIE generation algorithm
Input: system model Σ; system safety constraint set Ψ.
Output: SRoIE of Σ: C.

1: Initialize KI = φ, Λ = φ, C = (φ, φ)
2: while Ψ 6= φ do
3: choose a constraint ψi from Ψ
4: CIψi = φ, KIψi = φ
5: while

((
ki = KIGeneration

(
KIψi ,Σ, ψi

))
6= φ

)
do

6: KIψi = KIψi ∪ {ki} //key interfaces set of ψi
7: end while
8: CIψi = CIRefinement

(
KIψi

)
//core interfaces set of ψi

9: C = C ∪
(
ψi, CI

ψi
)

10: Ψ = Ψ/ψi
11: end while
12: return C

KIGeneration identifies the rest key interfaces based on key interfaces have
been identified, which ensures the completeness of identification process for a
specific constraint and is shown in algorithm 2.

Since the key interfaces space is huge and redundant, a refinement for SRoIE
is necessary, which is algorithm 3 CIRefinement. To reduce the computation
efforts, the monotone characteristic of core interfaces set has been utilized.

4 Case study

Computer based interlocking (CBI) [9] is a key subsystem in railway signal
domain. CBI undertakes a responsibility of arranging routes for trains movements
in safety, and needs a strict fail-safe requirement [10, 11]. As the effects of
concurrency, conflict, and competition, EIF may easily cause a accident and affect

Computers in Railways XV: Railway Engineering Design and Operation 415

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

Algorithm 2 Key interfaces set generation algorithm: KIGeneration
Input: identified interfaces set Ξ; system model Σ; safety constraint ψ.
Output: key interfaces set KIψ .

1: Initialize KIψ = φ, i = 1
2: Model Checking(Σ, ψ) with Ξ work properly
3: if ¬ (¬R1 ∨R2) then
4: get the counterexample µn
5: while i < num do
6: if ηGi 6= ηWi then
7: KIψ = KIψ ∪ {Ii}//update key interfaces set
8: end if
9: i+ +

10: end while
11: end if
12: return KIψ

Algorithm 3 Core interfaces set refinement algorithm: CIRefinement
Input: key interfaces set KI .
Output: core interfaces set CI .

1: Initialize CI = φ, k = 1
2: while k ≤ |KI| do
3: ki =choose the kth element of KI
4: i = 1, tem = ki, temp = KI/ki
5: while (i ≤ |temp|) do
6: ti =choose the ith element of temp
7: if ki ⊆ ti then
8: temp = temp/ti
9: tem = ki

10: else if ti ⊆ ki then
11: ki = ti //ti is a core interface
12: tem = ti
13: temp = temp/ti
14: i = 1
15: else
16: i+ +
17: end if
18: end while
19: SI = SI ∪ {tem}
20: k + +
21: end while
22: return CI

416 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

the safety and availability of signal system. The identification of SRoIE has a
significance for CBI safety design and maintenance.

4.1 Signal opening module

Signal opening is a core functionality of CBI, and its safety directly affects the
safety of movements of trains. For example, a line of a subway is shown in
figure 1. There is a point P04 within the protected section of a downlink signal
X0404, so the straight route X0404SR and diverging route X0404DR can be set
respectively depending on the point position.

Figure 1: A subway line.

The signal opening module of X0404 ΣX0404 involves 27 input interfaces,
including section, platform screen door, and point. ΣX0404 has four states:
(SR false, SR true, DR false, DR true), and two mutually exclusive
processes: X0404SR and X0404DR. X0404SR has a initial state SR false,
while X0404DR has DR false. When corresponding sections are clear
(∗P), platforms has no stop commands(∗STOP), signal has no call-on
command(∗CR), platform screen door is safe(∗SD), signal aspect is in safe
state (∗SGY A), depending on the position of P04 (P04SwNC for X0404SR,
P04SwRC for X0404DR), ΣX0404 transits to state SR true or DR true.

4.2 SRoIE identification and result analysis

ΣX0404 needs to satisfy the constraint: the straight route and diverging route cannot
be set simultaneously, denoted by: ψ1 := not (X0404SR and X0404DR). This
paper utilized SCADE [12] to implement the SRoIE algorithm, and 109 key
interfaces have been identified, for example (ST0402P ,P04SwNC,P04SwRC),
(P04SwNC,X0404SD,P04SwRC), (P04SwRC,X0404SGY A,P04SwNC,
042SD). Then the SRoIE is refined: (ψ1, (P04SwNC, P04SwRC)), which
indicates:

1.
(
ΣX0404 ‖ ΣW

)
� ψ1, if the interfaces P04SwNC and P04SwRC have

been assured;
2. When

(
ΣX0404 ‖ ΣW

)
2 ψ1, the states of P04SwNC and P04SwRC

should be checked.
The safety interfaces identified through field experiences includes ST0402P ,

T0414P , P0414.0402SwNC, 09SD, P04SwRC, etc, including the two core

Computers in Railways XV: Railway Engineering Design and Operation 417

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

interfaces identified by SRoIE for ψ1. Meanwhile, the rest of experience interfaces
are identified at other safety constraints. The SRoIE result is consistent with
the practical engineering experience, and the identification comprehensiveness is
ensured. Moreover, the CBI interfaces have been associated with specific safety
constraints respectively, and the faults modes that CBI should be ensured are
suggested implicitly.

5 Conclusion

This paper divided the SCS environment into gathering environment and working
environment. To ensure the safety in the two environment on system level, a
SRoIE scheme is presented. Based on the system model and safety requirements,
SRoIE scheme presents interfaces environment that a specific safety constraint
should be ensured. The interfaces information can be used to improve the design
or integration of modules, and guide system maintenance. SRoIE scheme has a
guiding and practice significance for the design, development and maintenance of
SCS.

Acknowledgements

This work is partially supported by the China Railway Corporation under Grant
2015X009-D and 2014X008-A. The authors also gratefully acknowledge the
helpful comments and suggestions of the reviewers, which have improved the
presentation.

References

[1] Knight J. C. Safety critical systems: challenges and directions. Software
Engineering, 2002. ICSE 2002. Proceedings of the 24th International
Conference on, pp. 547–550, 2002.

[2] U.S. NRC. Backgrounder on the Three Mile Island Accident. http://www.nrc.
gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html

[3] Elmqvist J. & Nadjm-Tehrani S. Safety-oriented design of component
assemblies using safety interfaces. Electronic Notes in Theoretical Computer
Science, 182: pp. 57–72, 2007.

[4] Elmqvist J., Nadjm-Tehrani S. & Minea M. Safety interfaces for component-
based systems. Computer Safety, Reliability, and Security. Springer Berlin
Heidelberg, pp. 246–260, 2005.

[5] Elmqvist J. & Nadjm-Tehrani S. Formal support for quantitative analysis
of residual risks in safety-critical systems. High Assurance Systems
Engineering Symposium, 2008. HASE 2008. 11th IEEE, pp. 154–164, 2008.

[6] Ying Liu & Xu Zhongwei. Safety interface scheme for component-based
safety critical software. Journal of Computer Applications, 28(11): pp. 2933–
2935, 2008.

418 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

[7] Clarke E. M., Grumberg O. & Peled D. Model checking. MIT press, 1999.
[8] Baier C. & Katoen J. P. Principles of model checking. Cambridge: MIT press,

2008.
[9] Hui M. A. Formal Modeling and Verification of Urban Rail CBTC

Interlocking Based on CSP. Beijing Jiaotong University, 2013.
[10] Haifeng Wang, T. H. Xu et al. Novel Online Safety Observer for Railway

Interlocking System. The Journal of Transportation Engineering ASCE,
139(7): pp. 719–727, 2013.

[11] Yang Yang & Shaowen Zou. Design and Development of Computer-based
Interlocking System SWJTU-II. Journal of the China Railway Society, 27(3):
pp. 118–123, 2005.

[12] ESTEREL Technologies. SCADE Suite. http://www.esterel-technologies.
com/products/scade-suite/

Computers in Railways XV: Railway Engineering Design and Operation 419

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

