
Proposal of a software coding analysis tool
using symbolic execution for a railway system

H.-J. Jo & J.-G. Hwang
Korea Railroad Research Institute (KRRI), Korea

Abstract

The railway system is being converted to a computer system from the existing
mechanical device, and the dependency on software is rapidly increasing.
Though the size and degree of complexity of software for railway systems are
slower than the development speed of hardware, it is expected that the size will
gradually grow bigger and the degree of complexity will also increase.
Accordingly, the validation of reliability and safety of embedded software for the
railway system started to become an important issue. Accordingly, various
software tests and validation activities are highly recommended in railway
software related international standards. In this paper, we present a software
coding analysis tool using symbolic execution for a railway system, and present
the result of its implementation.
Keywords: railway system, software validation, reliability, safety.

1 Introduction

Recently, the functions and complexity of embedded software (SW) for a
railway system have been rapidly increasing, and the risk cost caused by the
occurrence of SW error is relatively increasing. Especially since the fatal error
due to the malfunction of SW during railway operation is directly connected to
human accidents, the validation on SW shall be performed using various
methods and its evaluation and verification must be available. Procedures for
validating functional safety among railway system developments are being
standardized as IEC 61508 and IEC 62279, etc., and especially, in the case of
IEC 62279, it requires railway SW development and the safety management

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

doi:10.2495/CR160361

This paper is part of the Proceedings of the 15 International Conference th

on Railway Engineering Design and Operation (CR 2016)
www.witconferences.com

/evaluation to which this standard was applied by strengthening the safety
validation more and revising it recently, etc. [1, 2].
 However, despite the fact that the type approval for rolling stock SW became
mandatory in accordance with the revision of the Railroad Safety Act, it is still
suspended because of realistic difficulties of domestic railway manufacturers in
technical levels for SW development and validation to satisfy the level required
by existing international standards [3]. And, because the result of safety
evaluation by international standards becomes the index of product reliability,
there is difficulty in domestic operation and overseas expansion if evaluation is
not accomplished. Therefore, not only document validation on the safety
activities required by international standards, but also concrete supporting of
technology development to cope with analysis and validation through SW test
are very badly needed for the actual embedded SW development product for the
railway system.
 Especially, in the case of the test coverage of a SW code which can derive
quantitative test results among railway SW validation items required by
international standards, it is prescribed as a ‘HR Highly Recommended’
condition, as a verification and testing item in the vital railway system SW
whose railway SW Safety Integrity Level (SIL) grade is mostly classified as 3 or
4 [2]. Accordingly, in the case of a railway system’s SW embedded devices,
certification on safety can be obtained only if the test coverage of development
SW is accomplished nearly up to 100%. To enhance test coverage, this paper
wants to propose a SW source code analysis tool by using a symbolic execution
method and show its developed results.

2 Proposed SW source code analysis tool

2.1 Testing technology based on the SW source code

Generally, there is a control flow analytical method as the testing technology for
the developed SW source code, and the coverage can be measured and reported
through this method as to whether the area, branch and conditional statement, etc.
of the source code can be executed. Coverage is used as the representative
measure which can validate SW qualitatively even in the other industry fields,
and furthermore, it makes SW quality guessed at [4]. According to IEEE Std.
1008-1997, it is stated that all of the SW must be validated by test cases in the
SW unit test stage, and the statement and branch coverage of SW codes shall be
satisfied by the test case [5]. To measure the test coverage with unit test
performance, this standard recommends using automated means. In addition, it is
recommended using methods such as statement and branch coverage, etc. for the
validation on SW implementation stage in the IEC Std. 60880-2006 also [6], and
in actual industrial fields too, the statement and branch coverage is widely
utilized already.
 And, in RTCA/DO-178B which is the standard for the aviation industry, the
SW grade was classified according to the degree of importance in accordance
with the kind of accident verified through system safety evaluation, and the code

400 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

coverage requirements were defined according to the grade [7]. According to [7],
it is defined that the grade with a higher degree of importance to which safety is
required must satisfy the modified condition/decision coverage (MC/DC), and
the cases that prove the applicability are presented also [8, 9]. Therefore, the
modified condition/decision coverage must also be satisfied in the vital railway
system SW whose SIL grade is classified as 3 or 4. For this purpose, this paper
would like to inspect compatibility with SW requirements and the practicability
of source code routes and to apply the symbolic execution method which can
enhance the coverage in accordance with the reinforcement of test cases. The
implementation of the railway system SW source code analysis tool developed
by this paper is that to which the symbolic execution method was applied [10,
11], and the concrete contents developed are as shown in sections 2.2. and 2.3.

2.2 Symbolic execution method to enhance source code test coverage

The symbolic execution method which we would like to propose, when the
partial function of the source code was performed, extracts the conditional
expression with which each variable must satisfy, and provides the function that
can obtain various analytical results on source codes by obtaining the solution by
adding conditional expressions which will be used for the analysis together with
the conditional expression extracted as the additional function. Those functions
for applying a symbolic execution method to enhance the source code test
coverage are arranged as shown in Table 1.

Table 1: List of functions for symbolic execution application method.

Function name Description of function

Sequential
program input

It checks if the given input is suitable for the form of sequential
program, and provides the result of inspection. In the case of the
sequential program, it provides the parsed result so that the
corresponding program can access this developed analysis tool.

Calculation of
symbolic state

Starting from the beginning syntax of a given function of the
sequential program to the ending syntax, it obtains the condition
of route to reach each syntax sequentially, and collects values of
symbolic variables.

Inspection on
practicability to
program route

Until the end of a given function of the sequential program, it
inspects if execution itself is possible from the symbolic state
collected for performance.

Inspection on
compatibility
with requirements

It inspects if it is satisfied with the conditional expression which
wants to check matters after final performance of a given
sequential program.

Report on results
In cases where the conditional expression used in the inspection is
satisfied, it provides input values of variables which satisfy the
corresponding conditional expression.

Computers in Railways XV: Railway Engineering Design and Operation 401

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

void foo(int a)
{

int b = 1;
int c = 3;
if (a > b) {
 b = a;

} else {
 a = b;
b = c;

void foo(int a)

{

 int b = 1;

assume(a > b);

b = a;

return a + b;

 Syntax for control flow does not exist in the sequential program input from
the developed analysis tool, and all of the decision conditions existing in the
route to be performed originally are modified in the form of
"assume(<condition>)". For example, if the following C-language program is
assumed, Figure 1(a) is the source code before being converted to the sequence
language, and Figure 1(b) is the source code of the converted sequential program.
That is, when assuming the route which passes through the if-then clause in the
exercise, the sequential program which can be drawn is the result of Figure 1(b).

 (a) (b)

Figure 1: (a) Exercise source code before conversion to sequence language.
(b) Source code of converted sequential program.

 From the above result, we may see that the if-statement was replaced with the
condition of assume-function. In the same method, the route condition that
passes through this route can be generated easily by gathering conditions within
the assume-statement. And for the variables not used, we may see that slicing is
accomplished. That is, since the C variable is used in the if-else only, variables
not used in the sequential program for if-then are excluded. Each description due
to the main functions of this analysis tool is classified as follows.

1) Generation of project
This module is expected to carry out repetitive tasks to find suitable values by
performing it to the given sequential program and the conditional expression to
be validated. Thus, it supports repetitive tasks by composing and managing the
project for the sake of input factors. Although the project is restricted to not
edit the content after generation, it can support repetitive tasks sufficiently
because the conditional expression to be inspected is allowed to be edited
whenever it is performed.

2) Input(editing) of conditional expression
It resets the project being used currently by setting the new conditional
expression or editing, modifying the existing conditional expression.

402 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

3) Sequential program parsing
It converts the sequential program source code to the form of AST that can be
recognized in this analysis tool by parsing the sequential program source code in
the state of C-language to be input for the purpose of symbolic performance.
Sequential program can use all of the expressions excluding control phrases (if,
for, goto, switch, case, break, etc.) of general C-language. Therefore, sufficient
parsing ability to support programming languages is provided. And in the case of
the program for which parsing is impossible, the reason for non-recognition is
provided in the sequential program parser.

4) Performance of symbolic execution based on the parsing result
It obtains the function which is subject to be performed from the parsed
sequential program which was already analyzed, and performs symbolic
execution in accordance with each syntax that composes the function. After a
syntax was carried out, it renews the route condition to perform up to the
corresponding syntax and symbolic values used until now. The current route
condition generates a new route condition by combining route conditions up to
the previous syntax with conditions occurring in the course of performing the
current syntax. Symbolic values reset new values through calculation on
the basis of symbolic values of previous syntax.

5) Calculation of values satisfying the conditional expression
– To obtain the value which satisfies the symbolic route condition: After

completing the performance by using the constraint verifier library, final
symbolic values and final values satisfying the route condition shall be
obtained. In cases where there is any value that satisfies the corresponding
condition, corresponding input values are provided.

– Inspection on compatibility of conditional expression: After completing
symbolic performance, by inserting the given conditional expression together
with the route condition, additional conditional expressions are generated,
and obtains if there is any value satisfying it through the constraint verifier.

2.3 Result of development of the SW analysis tool for a railway system

The result of developing a source code analysis tool developed by applying the
proposed symbolic execution method is as follows, and first of all, implemented
contents of screen design for analysis tool and user interface implementation
method are as shown in Figure 3. Implementation of the screen for a symbolic
execution application analysis tool largely consists of four views, such as the
Project View, Properties View, Content View and Output View.

– Project View
It is the screen showing the outline of the project defined in this tool, and it
provides the tree-based screen. It considers the project as the highest node, and
has the child nodes called as Functions and Results. The Functions node has the
function defined in the sequential program that wanted to be performed in the
project as its child. The Results node has the result of symbolic execution carried
out for this project as its child. Children have the performed date and time as

Computers in Railways XV: Railway Engineering Design and Operation 403

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

their names. In cases where the Project which is the highest node and the result
of each performance are selected in this screen, Project Content View or Result
Content View is shown in the Context View area.

– Properties View
Properties View is the UI component provided by the Eclipse, and it shows the
property defined for selected item if the property for Project and Result is
defined.

– Output View
Output View is the view showing the simple text, and it shows various messages
occurring during the work of this module.

– Content View
Content View consists of four views such as the Project Info View, Target
Source View, Original Source Code View and Project File View again, and the
Info View presents the content of Invariant established in the Project together
with general information, such as the location of file corresponding to the Project
on the screen. Target Source View shows the content of source code which is
subject to be performed and established in the Project symbolically, and the
Original Source View shows the input file if any input file before being modified
to the sequential program exists. Finally, Project File View shows the content
itself of the Project in the form of XML.

Figure 2: Result of implementing screen design for the source code analysis
tool.

404 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

(a) (b)

Figure 3: (a) Target source view screen. (b) Original source view screen.

 The source code analysis tool was prepared in Java language, and it is
prepared as an Eclipse RCP (Rich Client Platform) application program.
Therefore, UI is composed using SWT (graphic library) which is used in the
Eclipse. The generated application program is designed so that it is not
dependent on the OS, and basically, the result on Microsoft Windows OS is
verified. The driving layer of the user interface is as shown in Figure 4. This tool
is divided into the SymbolicEngine system to perform the symbolic execution
from the sequential program and the SymbolicExecutorRCP system which is the
UI system that manages the project by using it and provides interaction to
perform with the user. SymbolicExecutionRCP is in charge of interaction with
the user and simple external communications, and the SymbolicEngine system is
in charge of the important internal communications, such as the
ConstraintVerifier, etc.

Figure 4: User interface driving layer of the developed tool.

 SymbolicEngine performs symbolic execution in the sequential program and
given text-based conditional expression, and it provides the value which satisfies
the conditional expression. It links to the ConstraintVerifier library in the course

Computers in Railways XV: Railway Engineering Design and Operation 405

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

of obtaining the value, and finds the value through it. SymbolicEngine is
reconstructed into three grouped sub-organizations for this purpose. It can be
divided into the parser function which analyzes the input source program, the
expression function which parses, and stores it by converting parsed structures to
meaningful syntax, and the execution function which performs converted syntax
symbolically.

Figure 5: Class diagram in relation to symbolic execution.

 Figure 5 is the class diagram in relation to the symbolic execution, and it
establish main initialization works and UI-related works
through SymbolicExecutor class, and the actual performance occurs through
SymbolicEngine class. Memory and SymbolicValue classes for the internal
performance are defined, and they can obtain the value if the result of symbolic

406 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

performance is available through ConstraintSolver which is the external system.
ConstraintVerifier is the independent external library, and it is linked to this
developed tool through a generated XML document.
 The source code analysis tool to which the symbolic execution method was
applied is generated as the Eclipse RCP application program which is not
dependent on the operation system, and it is linked to the internal
SymbolicEngine and external ConstraintVerifier, and it was designed and
implemented to perform functions specified previously. By designating one
sequential exercise program and target function, it performs validation on the
result of development for the corresponding implementation of function through
the process that finds and verifies actually a satisfactory value by providing a
conditional expression that wants to be verified. The exercise program (see
Figure 6) was applied as the input to the developed tool. It verifies if it can
perform up to the end of the corresponding function only so that the conditional
expression of the exercise program can be "TRUE".

Figure 6: Exercise program applied for validation on the developed tool.

 If symbolic execution is carried out in the developed tool, performance-
related messages are output onto the screen, and if the result of performance is
generated after completion of all of the progresses, a new result of performance
will be added to the Project View. The result performed through
SymbolicResultEditor is shown in Figure 7 and the value which satisfies the
conditional expression for the given sequential program exists, and with
the value at that time, 3X3 array and input values of integer variables are

Computers in Railways XV: Railway Engineering Design and Operation 407

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

Figure 7: Screen for completion of symbolic performance.

Figure 8: Screen for the result of completed symbolic execution.

provided as Figure 8. The performed symbolic state at this time is (as shown in
Figure 9), a variable of the 3X3 integer variable and it shows that each value was
changed to the specific symbolic value. In the case of the final route condition,
we may see that it consists of complex conditions. Like this, symbolic
performance was progressed through a given exercise program, and the referable
symbolic value, memory and route conditions could be verified. On this basis,

408 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

ConstraintVerifier made functions of tool verified finally by finding values
suitable for conditional expression and by showing that the value satisfying the
route of a given sequential exercise program exists.

Figure 9: Screen for symbolic state.

3 Conclusion

Recently, according to the development of computer technology, the dependence
on computer SW of railway systems has been increasing rapidly, and in
accordance with this technical development, high reliability and safety is
required for the vital railway SW. Accordingly, SW testing and validation are
required as mandatory in the railway system SW related international standards,
and they require to derive the result of quantitative source code test coverage
among SW validation items being required by these international standards.
Accordingly, although quantitative validation is performed generally as the
control flow analytical method that utilizes SW test cases, it is necessary to
reinforce test cases through the practicability of source code route to enhance the
test coverage up to about 100%.
 Accordingly, this paper proposed a SW source code analysis tool using the
symbolic execution method and showed the result of its implementation, and
verified functional validation with the result implemented actually. The proposed
analysis tool is the one applying a symbolic execution method that can enhance
the coverage according to the reinforcement of test cases by inspecting
compatibility with SW requirements and practicability of source code route, and

Computers in Railways XV: Railway Engineering Design and Operation 409

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

detailed contents on design of this developed tool which enable verification up to
the sequential program input, calculation of symbolic state, inspection on
practicability of program route, and the result of compatibility with requirements
were described in the main subject. Likewise, the result of screen
implementation for the source code analysis tool to enhance measurement of test
coverage for railway SW validation developed in this paper and the result up to
the validation on function of tool through the result of symbolic performance
completion via actual exercise program were presented also.
 Basically, this source code analysis tool to enhance railway SW test coverage
is the tool which will be utilized remarkably by sources of demand such as the
railway operation agency, etc. for SW validation of railway system, and at the
same time, it is considered that the degree of its utilization can be sufficiently
high even in the unit or consolidated testing stage for corresponding developed
products in the SW development process of railway-related industries also. In
addition, finally, since test coverage can be enhanced remarkably so that the
result of measurement on code-based test coverage can be matched to
the SWSIL grade wanted by the user, it may maximize the efficiency at the
actual industrial site of railway fields. If we use the developed source code
analysis tool widely in the SW validation and development stage, it is considered
that it may contribute to secure the safety and reliability by preventing errors in
advance by detecting inherent errors of vital railway SW through it.

References

[1] IEC 61508, “Railway Applications - The specification and demonstration
of RAMS”, 1998.

[2] IEC 62279, “Railway Applications – Communication, signalling and
processing systems – SW for railway control and protection systems”,
2015.

[3] Railroad Safety Act [Law No. 13436], Partial revision 2015. 07.
[4] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation”, In

ASE’08, 2008. 9.
[5] IEEE Std. 1008-1997, “SW Unit Testing”, 1997.
[6] IEC std. 60880-2006, “SW aspects for computer-based systems performing

category A functions”, 2006.
[7] RTCA/DO-178B, “SW considerations in airborne systems and equipment

certification”, 1992.
[8] Arnaud Dupuy and Nancy Leveson, “An Empirical Evaluation of the

MC/DC Coverage Criterion on the HETE-2 Satellite SW”, Proceedings of
DASC (Digital Aviation Systems Conference), Philadelphia, 2000. 10.

[9] Peter G Bishop, “MC/DC based estimation and detection of residual faults
in PLC logic networks”, 14th IEEE International Symposium on SW
Reliability Engineering(ISSRE), Denver, Colorado, 2003. 11.

[10] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. “Parallel symbolic
execution for automated real-world SW testing”, In EuroSys’11, 2011. 4.

[11] Cristian Cadar and Koushik Sen, “Symbolic execution for SW testing: three
decades later”, Magazine Communications of the ACM, 2013. 2.

410 Computers in Railways XV: Railway Engineering Design and Operation

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

