
Validation tool of functional safety for train 
control secure software 

J.-G. Hwang & H.-J. Jo 
Korea Railroad Research Institute (KRRI), Korea 

Abstract 

A train control system is a vital piece of control equipment which is responsible 
for the operation of trains, and its functional safety must be validated before real 
field application. Most of the existing studies on functional safety testing for the 
train control system secure software have focused on verifying the functional 
safety through the monitoring of the internal memory embedded system. 
However, the train control system is one of the typical embedded control systems 
in the railway sector, and the embedded secure software has a characteristic of 
generating appropriate outputs through the combination of internal processing in 
consideration of the current internal status and external input. Therefore, the test 
approach of using the interface communication channel can be an effective way 
for the functional testing for railway signalling system software in consideration 
of these characteristics. Since a communication interface specification of the 
train control system has the properties of the sequence input and output signals, a 
test-case for software testing is the most effective methodology by MSC 
language, one of the graphic languages. The MSC-based testing tool for 
functional safety of train control system secure software was developed and its 
applicability to the prototype of a train control system under development was 
confirmed. 
Keywords: secure software, train control system, software testing. 

1 Introduction  

A railway signalling system is one of the representative embedded systems in the 
railway area and it enables mutual exchange of input/output information with 
other control systems through interfaces. In addition, with the active employment 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press

doi:10.2495/CR160141

This paper is part of the Proceedings of the 15  International Conference th

on Railway Engineering Design and Operation (CR 2016) 
www.witconferences.com 



of communication technologies in railway signalling systems in recent years, the 
railway signalling system has evolved into a system which performs railway 
signalling functions through interfaces with more control devices. In other words, 
each railway signalling device has had unique functions in the past, but a railway 
signalling system able to perform more various and complex functions through 
interfaces with other systems is being developed and employed [1]. 
     The railway signalling system’s embedded software receives external input 
signals, processes them in combination with internal status information at that 
time and produces more than one appropriate output. Therefore, the most 
effective method for validation of functional safety may be to perform a 
functional safety test through external interface communication channels actually 
used by the railway signalling system under consideration of such embedded 
software’s operational characteristics. Various test tools are available for the 
validation of embedded system software, such as a railway signalling system, but 
they do not sufficiently consider the embedded software’s characteristics 
described above. Accordingly, taking into account such characteristics, research 
has been conducted to utilize interface communication channels actually used by 
an embedded system to input test data and provide feedback information [2, 3]. 
     The most effective method for validation of functional safety may be to 
perform a functional safety test through external interface communication 
channels actually used by the railway signalling system under consideration of 
such embedded software’s operational characteristics. However, the testing 
methods based on interfaces actually used are considered appropriate because of 
consideration of the embedded software’s characteristics, but they have some 
limitations in that interfaces actually have communication characteristics. In 
general, interfaces have the input/output signal sequence characteristic, but 
testing tools under development utilize input/output interface signals in testing 
under insufficient consideration of such a sequence characteristic. In other words, 
test cases are created using TTCN-3 (Testing and Test Control Notation Ver. 3) 
script languages developed for suitability testing of communication protocols. 
Since TTCN-3 standard is used in generating test cases, the sequence 
characteristic appears to be considered, but end users (testers) may think that this 
characteristic is not fully taken into account [4, 5]. TTCN-3 is an international 
standard testing script language standardized by ISO and ITU for suitability 
testing of mobile communication protocols and Internet protocols. It may be 
suitable for the testing of embedded software based on actual interfaces 
previously researched, but end users who do not have sufficient knowledge in 
TTCN-3 script language itself may have difficulties. 
     Moreover, since the railway signalling system’s external interfaces have the 
input/output signal sequence characteristic, using MSC (Message Sequence 
Chart), one of graphic languages to express sequences by scenarios, for test cases 
to test embedded software through input/output signals is a method that can be 
easily understood by users and that can effectively and accurately express 
communication protocols [6–8]. 
     For all MSC-based supporting tools, the input of test cases is based on MSC, 
but test results are in script format, making it difficult for testers to use them. The 

146  Computers in Railways XV: Railway Engineering Design and Operation

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press



test case generation and testing method through generation of MSC-based test 
cases and automatic conversion into TTCN-3 script language has many 
advantages, such as easy use and generation of test cases with higher accuracy 
for validation of railway signalling system’s embedded software characterized by 
an output based on external input data and internal conditions. 

2 Test cases using MSC  

In general, one process in embedded software is based on values obtained from 
prior operations. For example, in order to calculate and output the speed limit for 
the current train, data on locations of preceding trains is needed. Therefore, such 
data on locations of preceding trains corresponds to results from prior operations 
needed for calculation of speed limit for the current train. In other words, in 
order to perform a process, results from prior processes have to be sequentially 
utilized. Results from a process are used for another process. 
     MSC is a Z.120-standardized, graphic-based specification language, which is 
widely used in specification of communication protocol. MSC is a graphic 
method to easily express communication participants, time (the axis of ordinates), 
data flow between communication participants at each time point and data. It can 
be easily used for the effective expression of communication protocol. 
     Communication protocol specification is for sequential data exchange 
between two objects and MSC enables description of data to be transmitted. As 
described above, test cases for validation of embedded software based on 
interfaces actually used in a railway signalling system can be effectively created 
in MSC. A method for automatic conversion of such MSC-based test cases into 
TTCN-3 (international standard testing language) script language for the purpose 
of testing embedded software was proposed and the tool for this testing method 
was developed. 
 

* 시 스 템 정 보

System =BBT;position=10,20;size=100,15|
SUT;position=100,20;size=100,15

* 메 시 지 정 보

M essage=  M essage_1();position=50,20;size=100,15;BBT> O BC|
M essage_2();position=50,60;size=100,15;O BC> BBT

* 메 시 지 별 필 드 정 보

M essageField= M essage_1= {int M sgField_1=5, 
int M sgField_2=0..5} | 

M essage_2={int M sgField_3=0..7, 
int M sgField_4=10..5}

m scTestcase.txt

type record TRAIN _REGISTER_REQ UEST_M ESSAGE {
integer     H EAD ER_ReceiverSequenceN um ber_2,
integer     H EAD ER_TransferSequenceN um ber_2,

. . . 

hexstring   D ATA_O PCode_1, 
integer     D ATA_TrainRunningN um ber_4, 

. . . 
}

tem plate TRAIN _REGISTER_REQ UEST_M ESSAGE 
T_TRAIN _REGISTER_REQ U EST_M ESSAGE := {

H EAD ER_RSN _2             :=              ,
H EAD ER_TSN _2             :=               ,

. . . 
D ATA_O PCode :=               ,
D ATA_TrainRunnN um :=              ,

. . . 
}
group Settings {

}

testcase TC002_ReactionToSequenceN um berFailTest1() runs on Com ponentType 
system  System InterfaceType {var TRAIN _REGISTER_REQ UEST_M ESSAGE  

trainRegisterRequestM essage := {
H EAD ER_ReceiverSequenceN um ber_2 := R_SEQ _N U M _2,
H EAD ER_TransferSequenceN um ber_2 := lastestTSN , 

. . . 
D ATA_O PCode_1 :=  '08'H , 

. . . 
}
p.send(trainRegisterRequestM essage) to sut_addr;

. . . 
} 

testcase.ttcn 

- m scTestcase.txt 파일 파싱

- testcase.ttcn 파일 변환

사용자 편집

자동생성

 

Figure 1: Conversion of TTCN-3 script file. 

Computers in Railways XV: Railway Engineering Design and Operation  147

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press



     Test cases for previously developed testing tools are based on a TTCN-3 
script. As shown in the figure, a test case consists of three groups; message, 
settings and test case. The message group defines the message structure and 
message input value’s ranges. The settings group defines communication 
information on the interfaced system (IP and port number). The test case group 
includes transmission field’s values for actual testing. For test cases in TTCN-3 
script, it may be difficult for a tester to correct or edit them as necessary. In 
addition, it is difficult to intuitively understand a test case. Therefore, much 
effort and time are needed to create test cases. 
     In this study, in order to improve the user’s convenience and assure an 
intuitive understanding of test cases, a module was developed to input test cases 
based on MSC easily understood by users and optimized for communication 
protocol specification and to automatically convert them into TTCN-3 scripts. 
For MSC test cases, automatic matching is employed to individually recognize 
and save message names, system names and message parameters. As shown in 
the figures, coordinates where system names and message names are located are 
recognized, messages are sequenced on the basis of such coordinates’ 
information and then, they are converted into text files. Fig. 1 shows the process 
of converting such MSC-based test cases into text files. 
 

 

Figure 2: Windows for MSC-based test-case editing. 

     The process of inputting MSC-edited test cases into testing tools was based 
on a prior study [9]. MSC consists of events with a defined sequence between 
sending and receiving objects and such events correspond to message 
information. The sequence of such events is controlled and saved as a separate 
parameter and each sending message is referenced by this parameter. More 
information is described in the reference [9].  

148  Computers in Railways XV: Railway Engineering Design and Operation

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press



     When an MSC file is saved as a text file, the developed automatic conversion 
module performs parsing of such text file to automatically convert it into the 
relevant part in TTCN-3 script. As shown in this figure, when values are entered 
into individual fields at MSC, they are automatically converted into script, which 
can be edited in the resultant TTCN-3 script. 

3 Development and application of tool 

An automatic test case creation module based on MSC input of a testing tool for 
black box testing of railway signalling system software described above was 
developed and it was applied to the previously researched tool. Fig. 2 shows 
procedures for the input of an MSC-based test case, automatic conversion into 
and editing of script language, performance of testing using such test case and 
display of test results like Fig. 3. As shown in this figure, a test case is inputted 
in MSC format and output is also made in the same MSC format. In other words, 
the outcome developed in this study is the MSC-based test case input and output 
module, allowing testers to easily and intuitively understand input and output. 
 

 

Figure 3: Windows for MSC-based test results output. 

     In conclusion, when compared to the conventional method for creating a test 
case in script format, users are able to easily create test cases, leading to the 
decrease in errors in the course of the creation process. In Fig. 3, the right part 
shows various objects in MSC. Fig. 4 shows the output of test results in MSC 
format, including the test case name, testing start time and end time. The figure’s 
left part shows the message sending/receiving time during testing. "Consistency" 
at the bottom means the consistency with the test case, indicating that, when 

Computers in Railways XV: Railway Engineering Design and Operation  149

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press



testing was conducted according to the relevant test case, the target system was 
found to be in normal operation. 
     The black box testing tool developed in this study was applied to an actual 
train control system to confirm its applicability. Applicable train control systems 
include radio communication-based train control system’s onboard system and 
ground control and monitoring system and their prototypes are being developed 
in Korea. Functional safety of software for such a system under development 
was validated using the testing tool developed in this study in order to confirm 
its applicability. Results illustrated in this paper are derived from such 
application. 
 

control : {13:34:01.848} : // Time: 13:34:01.848. Date: 27/Oct/2015. MOT version: TC: 4.2.5. 
 
***************************************************************************** 
*** RUNNING TEST CASE LCC_SCT_02 
 
mtc : {13:34:01.927} : // CASE LCC_SCT_02 STARTED 
mtc : {13:34:01.927} : log("This executable code has been generated by evaluation copy of OpenTTCN compiler. Can be 
used for non-commercial evaluation purposes only"); 
mtc : {13:34:01.927} : map(mtc:p1, system:tsiPort1); 
mtc : {13:34:01.958} : p1.send(TRAIN_REGISTER_REQUEST_MESSAGE : { HEADER_ReceiverClass_1 := 2, 
HEADER_ReceiverId_1 := 1, HEADER_SenderClass_1 := 1, HEADER_SenderId_1 := 1, 
HEADER_ReceiverSequenceNumber_2 := 0, HEADER_TransferSequenceNumber_2 := 0, HEADER_DataLength_2 := 14, 
DATA_OPCode_1 := '08'H, DATA_TrainRunningNumber_4 := 825241649, DATA_ICT_ID_3 := 3223600, 
DATA_DriverID_4 := 825241648, DATA_TrainCategory_1 := 2, DATA_TrainLength_1 := 100 }) to { host := "127.0.0.1", 
portField := 7002 }; 
mtc : {13:34:01.958} : timer_1.start(30.0); // Timer is started: duration 30 s. 
mtc : {13:34:02.020} : p1.receive(TRAIN_SCHEDULE_MESSAGE LCC_SCT_02.T_TRAIN_SCHEDULE_MESSAGE := 
{ HEADER_ReceiverClass_1 := 1, HEADER_ReceiverId_1 := 1, HEADER_SenderClass_1 := 2, HEADER_SenderId_1 := 
1, HEADER_ReceiverSequenceNumber_2 := 0, HEADER_TransferSequenceNumber_2 := 1, HEADER_DataLength_2 := 
11, DATA_OPCode_1 := '0F'H, DATA_TotalPaths_1 := 9, DATA_PathIDn_I_1 := 10, DATA_PathIDn_II_1 := 20 }) from 
{ host := "127.0.0.1", portField := 7002 }; 
mtc : {13:34:02.020} : setverdict(pass); 
mtc : {13:34:02.020} : log("TRAIN_SCHEDULE_MESSAGE received by vaild ReceiverSequenceNumber of 
TRAIN_REGISTER_REQUEST_MESSAGE."); 
mtc : {13:34:02.020} : unmap(mtc:p1, system:tsiPort1); 
control : {13:34:02.036} : // CASE LCC_SCT_02 FINISHED WITH PASS 
 
///////////////////////////////////////////////////////////////////////////// 
/// TEST CASE LCC_SCT_02 COMPLETE VERDICT PASS 
 
 
***************************************************************************** 
*** TEST EXECUTION SUMMARY 
 
Pass Fail Inconc None Error Total Duration 
1 0 0 0 0 1 00:00:01 

Figure 4: Output of test results in text file (example). 

     Fig. 5 shows the structure of the target system and interface for black-box 
testing. As shown in this figure, the new black-box testing tool inputs test case 
data and receives feedback data through the interface channel and snooping 
device. The interface channel was developed to allow expansion of connectivity 
with other communication protocols. The interface channel is a device for data 
communication between the testing tool and target system. It sends data from the 
testing tool to the target system’s interface and it receives data from the target 
system to the testing tool’s interface. 

150  Computers in Railways XV: Railway Engineering Design and Operation

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press



4 Conclusion  

The conventional railway signalling system’s black box testing tool creates and 
edits test cases based on a TTCN-3 script. However, if test cases are created in 
script language, errors may be introduced. In addition, users may have 
difficulties in creating and editing test cases in script language. A test case for 
communication channel-based testing, such as a railway signalling system is 
generally based on specification in MSC format. Therefore, when compared to 
the creation and edition of test cases in script language, the creation and edition 
of a test case in MSC format may have various advantages, such as a decrease in 
errors, because testers are able to intuitively understand them. Accordingly, a 
module was developed in this study to allow editing and creation of test cases in 
MSC, a graphic language familiar to users, and to automatically convert them 
into script language for testing. In addition, it was designed to output test results 
(test log) in both MSC and script. Editing of test cases through a graphic editor 
enables the re-use of test cases and the text-based log is organized to assure 
user’s easy analysis. The module’s applicability was tested. In this test, 
conversion of an MSC-based test case into script language and performance of 
testing based on such automatically converted test case were confirmed. Test 
results were also expressed in two formats (MSC and script) and normal output 
was confirmed through comparison of two test logs. 
 

 

Figure 5: Testing for applicability of tool to train control system. 

References 

[1] Korea Railroad Research Institute, “Development of technology for safety 
and efficiency improvement of train operation”, KRRI research report, Dec. 
2014. 

Computers in Railways XV: Railway Engineering Design and Operation  151

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press



[2] J. G. Hwang, H. J. Jeong and B. H. Kim, “Results of Coding Rules Testing 
of Train Control System Software”, International Journal of Software 
Engineering and Its Applications, Vol. 7, No. 3, pp. 249-257, 2013. 

[3] J. G. Hwang, J. H. Baek, and H. J. Jo, “Interoperability test methodology for 
train control system using interface channels”, CMEM 2015 International 
Conference Proceeding, May 1015.  

[4] C. Willcock, T. Deiss, S. Tobies, S. Keil, F. Engler, S. Schulz and A. Wiles, 
An Introduction to TTCN-3, 2nd Edition, John Wiley & Sons Ltd., 2011. 

[5] http://www.ttcn-3.org/index.php/downloads/standards 
[6] E. Rudolph, J. Grabowski, and P. Graubmann, “Tutorial on Message 

Sequence Charts (MSC’96)”, Tutorial of FORTE/PSTV’96 conference 
proceedings, Oct. 1996. 

[7] ITU-T, “Recommendation X.120: Message Sequence Chart (MSC)”, Setp. 
1994. 

[8] J. Graowski, D. Hogrefe, I. Nussbaumer, and A. Spichiger, “Test case 
specifications based on MSCs and ASN.a,” Proc. of the Seventh SDL Forum 
1995, pp. 307-322, 1995. 

[9] H. S Bae and Y. R. Kwon, “Validation of timing and communication 
constraints in real-time parallel programs”, Phd. Dissertation in Computer 
Science, KAIST, 1999.  

152  Computers in Railways XV: Railway Engineering Design and Operation

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press




