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Abstract 

A railroad yard is the basic production unit of rail freight transportation, located at 
the junction of railway lines, mainly responding to the operations of arriving, 
sorting, assembling, marshaling, departing; its operation efficiency directly affects 
the economic benefits of the railroad industry. However, the problem of railroad 
yards’ operations planning not only has a complex model and intractable 
algorithm, but also a lot of uncertainty factors exist. So searching for an efficient, 
effective, accurate planning method has always been a difficulty in this field. 
Different countries, different regions and different production environments vary 
their description methods, in addition to optimization objectives and constraint 
conditions. Because of this, it becomes very difficult for researchers from related 
fields to learn from each other, and the experimental results cannot be compared. 
So there is an urgent need for building a method of unified modeling based on 
theory. We consider the fact that operation planning problems of a railroad yard 
are related to particular production scheduling problems. Then, we use production 
scheduling theory to describe the rail yard’s problem, which can strengthen the 
theoretical depth and facilitate the research of experts on related fields of 
scheduling, math, computer and control theory. Combined with the operation 
feature and overseas and domestic research status, this paper has unified the 
description method of the operation procedure, variable naming, problem 
description, objective function and constraint condition. A standard construction 
method of one switch engine, one hump model was given. 
Keywords: railroad yards, operations plan, production scheduling, optimal 
model. 
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1 Introduction 

A railroad yard, also known as a marshalling station, shunting yard or railway 
yard, is the core of the railway terminal, which is the distribution place for 
allocating wagon-flows coming from arrival trains to form the new trains. 
According to statistics, in China, the annual daily number of sorted wagons of a 
railway network railroad yards is 6000 and the efficiency and quality directly 
affect the work efficiency and economic benefit of railway transportation [1]. But 
the planning issue of a railroad yard’s operations plan not only has complex model 
building, involves creating a difficult algorithm for solving it but also has 
uncertainty factors. Therefore, searching for an efficient real-time planning 
method is the difficult point in the field. Different countries, station types and 
operation equipment vary in their description, optimization objectives and 
constraint conditions making it hard to learn from each other from relevant 
research results and to compare the experimental results. The development of this 
field is restricted and there is an urgent need to build up a set of theoretical support 
for a unified modeling method. The planning issue of a railroad yard’s operations 
plan is a large-scale production scheduling problem, a kind of classical problem 
of combination and optimization. From the point of view of computational 
complexity, this kind of problem has NP properties and it is hard to find the 
optimal solution. The approximate solution is usually obtained by using the 
approximate algorithm or the heuristic algorithm. 
     In this paper, combined with the modeling method of production scheduling 
theory, we build a wagon-flow allocation model of single directional, single 
pushing and single humping. This model is established on the optimal goal for the 
shortest dwell time of all cars during a stage plan time and with some constraint 
conditions such as car flows joining relation, destinations, full axis, rail cars in 
arrival or departure trains, hump operation type, sorting sequence, assembling 
sequence etc. 

2 Problem statement 

2.1 Production scheduling problem 

The production scheduling problem [2] is one of the representative problems of 
combinatorial optimal problems in operations theory. It means making the 
reasonable production decision under the known condition of production tasks. 
According to the expended goals, it should determine how to most efficiently 
allocate the limited human and material resources to different tasks in time order. 
If one only considers the processing sequence of the tasks, it is a sequencing 
problem in mathematics, which is an urgent problem to be solved in the process 
of manufacturing production management [3]. In 1954, after the first article which 
described a permutation flow shop scheduling problem of two machines was 
published [4], in the following 60 years, scheduling problems have been the 
concern of researchers in the fields of mathematics, computers, industrial 
engineering and economic management. 
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     According to the literature [5–9], the research can be divided into the following 
5 stages: for the first stage (1950s–1960s), its technical characteristics are a 
combination of analysis; for the second stage (1960s–1970s), the main technical 
features are branch and bound, and dynamic programming; for the third stage 
(1970s–1980s), the main technical feature is computational complexity theory; for 
the fourth stage (1980s–1990s), the main technical feature is the approximation 
algorithm combined with heuristic strategies; for the fifth stage (1990s to date), 
the main technical features are theories of real time and uncertainty modern 
scheduling. The research of production scheduling has been accompanied by the 
development of mathematics and computer science. For different production 
processes, the mathematical models of the different production scheduling 
problems vary. As an easy description, in 1967, Conway et al. [10] proposed a 
method of four parameters representing a scheduling problem. Based on that, in 
1979, Graham et al. [11] proposed a three-parameter representation method. Then 
a large number of studies followed using the description of three parameters α|β|γ, 
and the definitions of Pinedo in [12] can be associated with our question as 
follows. 

2.1.1 The possible machine environments specified in the α field  
Identical machines in parallel (Pm): There are m identical machines in 
parallel. 
Flow shop (Fm): There are m machines in series. Each job has to be 
processed on each one of the m machines. All jobs have to follow the same 
route, i.e., they have to be processed first on machine 1, then on machine 2, 
and so on. 
Flexible flow shop (FFc): A flexible flow shop is a generalization of the flow 
shop and the parallel machine environments. Instead of m machines in series 
there are c stages in series with at each stage a number of identical machines 
in parallel. Each job has to be processed first at stage 1, then at stage 2, and 
so on. A stage functions as a bank of parallel machines; at each stage job j 
requires processing on only one machine and any machine can do. The 
queues between the various stages may or may not operate according to the 
First Come First Served (FCFS) discipline. (Flexible flow shops have in the 
literature at times also been referred to as hybrid flow shops and as multi-
processor flow shops.) 

2.1.2 The processing restrictions and constraints specified in the β field 
Release dates (rj ): If this symbol appears in the β field, then job j cannot start 
its processing before its release date rj. If rj does not appear in the β field, the 
processing of job j may start at any time. 
Preemptions (prmp): Preemptions imply that it is not necessary to keep a job 
on a machine, once started, until its completion. When preemptions are 
allowed prmp is included in the β field; when prmp is not included, 
preemptions are not allowed. 
Permutation (prmu): A constraint that may appear in the flow shop 
environment is that the queues in front of each machine operate according to 
the First In First Out (FIFO) discipline. 

Computers in Railways XV: Railway Engineering Design and Operation  81

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 162, © 2016 WIT Press



Blocking (block): Blocking is a phenomenon that may occur in flow shops. 
If a flow shop has a limited buffer in between two successive machines, then 
it may happen that when the buffer is full the upstream machine is not allowed 
to release a completed job. 

2.1.3 Possible objective functions to be minimized in the γ field 
Total weighted completion time ( ) :j jw C  The sum of the weighted 

completion times of the n jobs gives an indication of the total holding or 
inventory costs incurred by the schedule. The sum of the completion times is 
in the literature often referred to as the flow time. The total weighted 
completion time is then referred to as the weighted flow time. 

2.2 Technical operations of railroad yards 

Each railroad yards needs to set up a number of yards according to its own 
transport production demand; it can complete multi-destination technical 
operation such as train arrival and departure operations, car sorting and assembly 
operations. The function partition and flexible use of each yard are determined by 
the rational layout of the station, the capacity of the technical equipment, and the 
cars meeting a balance between inbound and outbound trains. Based on the 
practical operational process, the yards can be divided into functions of a receiving 
yard, a classification yard and a departure yard. In addition, there can be a hump 
in the linking area between the receiving yard and the classification yard, and also 
the pulling out tracks in the linking area between the classification yard and the 
departure yard. The hump has a certain degree of slope, so that it can help the 
wagon flow under potential energy to slip into the classification yard. Therefore it 
is always used for sorting. The pulling out tracks are the flat tracks used for 
marshalling or picking up, and also for no hump car sorting.  Figure 1 gives a 
station chart of a bidirectional three-grade six-yard transversal type railroad yard 
which is commonly used for larger operations. 

 

Figure 1: Station chart of a bidirectional three-grade six-yard transversal type 
railroad yard. 
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     Railroad yards have perfect transportation equipment in that they can carry out 
all of the work flow in the station such as arriving, sorting, accumulating, 
marshalling and departing.  
     There are many kinds of definitions about the functional assignment in the 
classification yard and receiving yard (see [13–17]). In this paper, we review one 
of the situations: the arriving technical operation refers to the task of meeting the 
arrival train on the receiving track and of its being inspected by an inspector group 
etc.; the sorting technical operation refers to disassembling the inbound train flow 
or train set onto the special track of the classification yard via the hump or pull out 
track according to the cars’ destinations; the accumulating technical operation 
refers to the car halting process which starts from the time of humping into the 
classification yard and ends at the time of pulling out to the departure yard; the 
marshalling technical operation refers to the shunting operation which needs to 
select accumulated cars by the pulling out engine to make up wagon flow 
according to the rules of the freight train formation plan, the train diagram, and the 
regulations governing the railway technical operation on the pulling out tracks; the 
departure technical operation refers to the setup operation for the departing train 
in the departure yard. 

2.3 The relationship between production scheduling and railway yard 
operation scheduling 

The railway yard operations problem is the need to organize a variety of productive 
resources to complete the work of meeting arriving trains and making sure trains 
depart day and night according to production demand; it is a large-scale complex 
production scheduling problem. In China, the schedulers organize the production 
scheduling plan in accordance with a daily shift working plan which is made firstly 
by railway administration. According to the specific circumstances of the current 
station, taking 3–4 hours as a stage, they adjust the deviation in the daily shift plan 
and gradually make detailed operation plans to achieve the production indexes. 
The operation scheduling can be divided into the daily shift working plan, the stage 
plan and the shunting operation plan. The relationships between the different 
levels of the plans are shown in Figure 2. 
 

Daily and shift traffic plans (12h)

Stage plan 1（3h）

*Wagon-flow allocation plan

Shunting engines using plan

Arrival and departure tracks using plan

Shunting operating plan

Stage plan 4（3h）…

Shunting operating plan Shunting operating plan  

Figure 2: The different levels of the railroad yard scheduling operation plans. 
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     The stage plan is the core of the whole plan, which is like a connecting link 
between the up level plan and the down level plan. Establishment of a stage plan 
mainly includes car assignment, the humping sequence, the marshalling sequence, 
hump engine scheduling, pulling out engine scheduling and arrival and departure 
track occupation, through setting a wagon-flow allocation plan, a shunting engine 
usage plan and an arrival and departure track usage plan. The focus of the stage 
plan is the wagon-flow allocation plan which forms the basis for the other two 
plans. The wagon-flow allocation plan not only needs to consider the requirements 
of the departure trains in the current stage, but also the factors of humps, engines, 
and tracks comprehensively. It mainly determines the departure train: cars coming 
from which arrival trains, the detailed destinations, and the number of cars in one 
destination. The destination and all car numbers must obey the regulations of the 
formation plan. It is not only the embodiment of coordinated operation in sorting 
and assembling, but also an optimal problem of reasonable selection and 
collocation. The process of wagon-flow allocation can be divided into dynamic 
wagon-flow allocation and static wagon-flow allocation [18]. Dynamic wagon-
flow allocation mainly solves how to set the order of sorting based on the demand 
of the outbound trains. Static wagon-flow allocation studies focus on how to make 
train allocation under the condition of determined sorting order. Therefore, the key 
to finding the optimum wagon-flow allocation plan is to choose a rational sorting 
order. The wagon-flow allocation is discussed in the following paragraphs.  
     The research into the railway yard operation problem involves many technical 
terms, which makes it difficult to understand for experts in the field of other 
scheduling problems from other majors. Therefore, we hope that this problem can 
be changed from a specific scheduling problem of railway yards to a more general 
production scheduling model. The forms of the production scheduling problem are 
various, and it is difficult to unify. In fact, many technical terms originate from 
manufacturing scheduling problems which first attracted attention, such as 
machine, job, operation and order. In order to unify the terms, the specific 
scheduling problems can be abstracted and converted into a standard form of three 
parameters. 
     Based on the description of the deterministic production scheduling problem, 
the model distributes receiving tracks, inspectors, humping engine, hump, 
classification tracks, pulling out engine and the number of departure tracks to 
different buffers, and makes an inbound train correspond to a job and technical 
operations correspond to different machines. So, the description of a wagon-flow 
allocation problem in a specific railway yard is as follows. 
     The total number of inbound trains is n, where the trains have different 
priorities. The yards consist of 18 receiving tracks, 2 humping engines, 1 piece of 
hump equipment, 30 classification tracks, 1 pulling out engine, 14 departure 
tracks, and 2 departure technical operation groups. Each inbound train needs four 
operating procedures in order: they are arriving technical operation, sorting 
technical operation, marshalling technical operation and departing technical 
operation. Each procedure can only be processed on one machine with no preempt. 
When the buffer is without enough spare space, the upstream machine can’t release 
the job. Each procedure needn’t meet the first in first out rule, that is to say the 
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model has no permutation constraint. In addition, the wagon-flow allocation plan 
should be constrained by the requirements of the formation plan and the train 
diagram; this problem also belongs to the scheduling problem and has a due date. 
As the stage plan is only a part of the daily shift working plan and the jobs have 
different arrival times, the total completion time is not suitable to this problem as 
it can’t recognise the efficiency of inbound trains. We adopt the total wagon-flow 
dwell time (Cj′) on the station during a stage plan time as the optimal function. 
Based on the above analysis, the problem can be described as a flexible flow shop 
scheduling problem with blocking. The problem described by the three parameters 
is: FF4|rj, block| j jw C  . Figure 3 illustrates the job flow of the problem. 

 

Figure 3: The job flow of the wagon-flow allocation problem. 

3 The optimal model of the scheduling problem of 
railroad yards 

The model of single pushing and single humping is a fundamental scheduling 
formation in a wagon-flow allocation problem. Based on this model, 
many problems of other models can be transformed or expanded. Other modeling 
problems refer to double pushing and double humping, the yards that receive 
exchange cars, empty car distribution and multi-objective optimization. Compared 
with others, sorting is the core operation. We assume that under the condition of 
sufficient operation resources, which include the group of inspectors, the tracks of 
all kinds of yards, and the marshalling sequence being equal to the departure 
sequence according to the train diagram, the problem is simplified to a sorting 
sequence optimal problem. When we assume the case of one humping engine and 
one pulling out engine, the problem can be described as F2|rj, block| j jw C   in the 

format of production scheduling theory. 
     For the characteristics of the wagon-flow problem,  the conventions are given 
as follows: the total number of trains including which are halting in the 
classification yard, having arrived or being expected to arrive in the receiving yard 
is n+1,  we assume that all of the cars are in the classification yard at the beginning 
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of the stage plan at the 0th inbound train; the total number of outbound trains in the 
time of a stage plan is m+1, where we assume that the (m+1)th outbound train refers 
to all of the cars not assembled to any outbound train at the end of the stage plan; 
the maximum number of sorting intervals is defined as K, where sorting interval 
refers to the time window between the beginning and the ending of a whole sorting 
operating process, assuming T0 to be the starting time of a stage plan, and letting 
the stage plan operating time be 3–4 hours; outbound trains must obey the train 
diagram to operate, but the outbound train is allowed to depart whilst not meeting 
the constraint of full axis so as not to waste the operation curves of the train 
diagram. The definition of the symbols used in the model are shown in Table 1.  

Table 1:  Symbol definition. 

Symbol Definition Vague range 
D inbound train symbolic constant 
C outbound train symbolic constant 
CF departure technical operation symbolic constant 
BZ marshalling technical operation symbolic constant 
JT sorting technical operation symbolic constant 
DD receiving technical operation symbolic constant 
JTQJ sorting interval symbolic constant 
BZQJ marshalling interval symbolic constant 
j inbound train numbering j=0,1,…,n 
i outbound train numbering i =1,…,m,m+1 
f destination f=‘1’, ‘2’, …, ‘N’ 
k sorting interval numbering k=1,2,…,K 
h marshalling interval numbering h=1,2,…,m 
F the set of all destinations on the railroad yards F={‘1’,…, ‘f’, …, ‘N’} 
Dj the jth inbound train Dj= D0, D1,…, Dn 
Ci the ith outbound train Ci= C1, C2,…,Cm+1 
wj the weight of Dj’ priority  
FD,j the set including all of fs in Dj FD,j  F 

FC,i the set including all of fs conforming to Ci’s 
marshalling demand 

FC,i  F 

Dj,f the set of cars in Dj on the destination of f Dj,f  Dj 

|X| the number of set X nonnegative integer 
Cf

i,j the set of wagons coming from Dj,f and 
allocated to Ci on the destination of f 

Cf
i,j   Dj,f 

xf
i,j the number of Cf

i,j nonnegative integer 
TC,i departure time of Ci nonnegative integer 
TD,j arrival time of Dj nonnegative integer 
tCF,i departure operating time of Ci nonnegative integer 
tBZ,i marshalling operating time of Ci nonnegative integer 
tJT,j sorting operating time of Dj nonnegative integer 
tDD,j arriving operating time of Dj nonnegative integer 
ri the number of Ci’s full axis positive integer 
DJTQJ,k Dj assigned to the kth soring interval  DJTQJ,k∈{ D1,…, Dn } 
TJTKS,k the start time of the kth soring interval nonnegative integer 
CBZQJ,h Ci assigned to the hth marshalling interval CBZQJ,h∈{C1, C2,…,Cm} 
TBZKS,h the start time of the hth marshalling interval nonnegative integer 
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Table 1: Continued. 

Symbol Definition Vague range 
YT

i,j 0-1 variables represent the cars matching 
relation between Dj and Ci according time 

YT
i,j =0,1 

Yf
i,j 0-1 variables represent whether the direction of 

f conforms to Ci’ formulation rules according 
to the marshalling plan 

Yf
i,j=0,1 

Yj
JTQJ,k 0-1 variables represent whether Dj can be 

disassembled on the kth soring interval 
Yj

JTQJ,k=0,1 

Yi
BZQJ,h 0-1 variables represent whether Ci can be 

assembled on the hth marshalling interval 
Yi

BZQJ,h=0,1 

 

     The production environment, the processing restrictions and constraints, and 
the optimal functions of the model can be described as follows. 

3.1 The production environment 

1 humping engine and 1 pulling out engine, so it belongs to a 2 machine flow shop 
problem. 

3.2 The processing restrictions and constraints 

(1) Wagon-flow joining relation constraints: 

YT
i,j=

C, CF, , JT, , D,

C, CF, , JT, , D,

0 0
1 0

i i BZ i j DD j j

i i BZ i j DD j j

T t t t t T
T t t t t T

     
      

,   1≤i≤m, 0≤j≤n ;  (1) 

TC,i, tCF,i, tBZ,i, tJT,j, tDD,j, TD,j  0,   1≤i≤m, 0≤j≤n;   (2) 
xf

i,j≤YT
i,j *|Dj,f|, 1≤i≤m, 0≤j≤n, 1≤f≤N;               (3) 

     Equation (1) is considered for the wagon-flow joining relation between Dj and 
Ci. If it is satisfied, YT

i,j =1; otherwise YT
i,j =0. Equation (2) shows that all the values 

of the time variables can’t be negative. Equation (3) means the cars of Dj can be 
assembled to Ci if and only if YT

i,j =1.  
 

(2) Destination constraints: 

Yf
i,j=

 
 
D, C, D, C, D, C,

D, C, D, C,

0 ( ) ( ) ( )

1 ( ) ( )
j i j i j i

j i j i

f F F F F F F F
f F F F F

        
    

  
 

 ,  

1≤i≤m, 0≤j≤n, 1≤f≤N;    (4) 
xf

i,j≤Yf
i,j *|Dj,f|, 1≤i≤m, 0≤j≤n, 1≤f≤N ;   (5) 

     Equation (4) shows that Yf
i,j=1 if and only if the destination f of Djs cars 

included in the Ci destination set; otherwise Yf
i,j=0. Equation (5) means that the 

cars of Dj can be assembled to Ci if and only if Yf
i,j=1. 

 

(3) The car number assembling to the outbound train constraint:  

,
0 1

n d
f

i j
j f

x
 
 ≤ri, 1≤i≤m ;    (6) 

 

(4) The car number constraints between the inbound train and outbound train: 

D,

,
1 j

m
f

i j
i f F

x
 
  ≤

D,

,| |
j

j f
f F

D

 , 0≤j≤n ;            (7) 
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C,

,
0 i

n
f

i j
j f F

x
 
  ≤

C,

,
0

| |
i

n

j f
j f F

D
 
  , 1≤i≤m ;            (8) 

     Equation. (7) shows that the number of cars in Dj must be greater than or equal 
to all the number of cars in Ci which comes from Dj; Equation (8) means that the 
number of cars in Ci must be less than or equal to the number of cars in Dj which 
satisfies the destination requirement of Ci.  
 

(5) Hump and humping engine constraints (single pushing and single humping): 
if Dj can be arranged to sort on the kth sorting interval, it must meet the following 
constraints: 

Yj
JTQJ,k = JTQJ,

JTQJ,

0
1

k j

k j

D D
D D


 , 1≤j≤n, 1≤k≤K;                  (9) 

JTQJ,
1

n
j

k
j

Y

 =1, 1≤k≤K;                 (10) 

JTQJ,
1

K
j

k
k

Y

 =1, 1≤j≤n ;                 (11) 

JTKS, JTQJ, JT,
1

n
j

k k j
j

T Y t


  ≤ JTKS, 1kT  ,1≤k≤K－1;                  (12) 

 JTKS,1 0 JTQJ,1 D, DD,
1

JTKS, 1 JTQJ, 1 JT,
1

JTKS,

JTQJ, D, DD,
1

max , , 1

,
max ,1

( )

n
j

j j
j

n
j

k k j
j

nk
j

k j j
j

T T Y T t k

T Y t
T k K

Y T t



 




  
     

 
  

   
    
     

 







;       (13) 

JTQJ,
1 1

n K
j

k
j k

Y
 
 *tJT,j≤t ;          (14) 

xf
i,j= Yj

JTQJ,k* xf
i,j, 1≤j≤n, 1≤i≤m ;               (15) 

 
     Equation (9) shows that if Dj has been arranged to sort on the kth sorting 
interval, then the value of Yj

JTQJ,k
  is equal to 1; otherwise the value of Yj

JTQJ,k
  is 

equal to 0. Equation (10) shows that one sorting interval only can arrange one 
inbound train operation. Equation (11) shows that one inbound train only can 
occupy one sorting interval. Equation (12) shows that only when the upstream 
inbound train has completed its sorting operation can the current inbound train 
begin its operation by the same humping engine. Equation (13) means that only 
when Dj’s earliest sorting time is less than or equal to TJTKS,k can Dj be arranged to 
the kth sorting interval. Equation (14) means that the total inbound train sorting 
operating time must be less than or equal to the stage plan time T. Equation (15) 
shows that the number of cars coming from the unassembled trains can’t be the 
same as the number of xf

i,j.   
(6) Pulling out engine constraints: 

Yi
BZQJ,h= BZQJ,

BZQJ,

0
1

h i

h i

C C
C C


   1≤h, i≤m ;        (16) 
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BZQJ,
1

m
i

h
i

Y

 =1, 1≤h≤m ;           (17) 

BZQJ,
1

m
i

h
h

Y

 =1, 1≤i≤m;          (18) 

BZKS, BZ,h iT t ≤ BZKS, 1hT  ,1≤i≤m, 1≤h≤m-1 ;                         (19) 

BZKS,hT ≤TC,i-tCF,i-tBZ,i, 1≤h, i≤m ;              (20) 

BZQJ,
1 1

m m
i

h
i h

Y
 
 *tBZ,i≤t ;           (21) 

xf
i,j= Yi

BZQJ,h* xf
i,j,1≤j≤n, 1≤i≤m ;              (22) 

 

     Equation (16) shows that if Ci has been arranged to assemble on the hth 
marshalling interval, then the value of Yi

BZQJ,h is equal to 1; otherwise the value of 
Yi

BZQJ,h
  is equal to 0. Equation (17) shows that one marshalling interval only can 

arrange one outbound train operation. Equation (18) shows that one outbound train 
only can occupy one marshalling interval.  Equation (19) shows that only when 
the upstream outbound train has completed its marshalling operation can the 
current outbound train begin its operation by the same pulling out engine. Equation 
(20) means that only when Ci’s latest marshalling time is greater than or equal to 
TBZKS,h can Ci be arranged to the hth marshalling interval.  Equation (21) means 
that the total outbound train marshalling operating time must be less than or equal 
to the stage plan time T. Equation (22) shows that if Ci hasn’t accessed any 
marshalling interval, then the number of cars in the classification yard can’t be the 
same as the number of xf

i,j.  

3.3 The optimal functions 

Let xf
i,j be the decision variable, making the weighted total wagon-flow dwell time 

on the station during the stage plan time be the optimal function, as follows: 

min z(xf
i,j)=

C D

1

,
1 0 ,i , j

m n
f

j i j
i j f F F

w x


  

 


(TC,i TD,j).           (23) 

4 Conclusions 

The railroad yard scheduling problem is more complicated than the same type of 
production scheduling problem. In any scheduling table, there is another NP 
problem which refers to the resource matching problem. Combined with different 
problems, using the historical data to generate the heuristic rules, the key point for 
further research is to build up a concise model and find an efficient algorithm.  
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