
An optimized, automatic TMS in operations in
Roma Tiburtina and Monfalcone stations

S. Foglietta, G. Leo, C. Mannino, P. Perticaroli & M. Piacentini
Optrail, Italy

Abstract

A remarkable number of works on automatic train dispatching have recently
appeared in the scientific literature, many of which are also exploiting some
exact or heuristic optimization. Despite of this interest, very few automatic
dispatching systems are actually in operation in main line or mass transit networks,
mostly devoted to simple tasks in small lines. In this work we describe a recent
implementation of a real time dispatching system monitoring and controlling trains
in two large stations, namely Roma Tiburtina and Monfalcone. The system exploits
optimization in order to take and implement crucial dispatching decisions. In
particular, the algorithm finds suitable routes and schedules for the movements
of trains in the station, so as to minimize costs and delays. The resulting trains
movement is conflict-free, and respects safety and specific traffic rules. Also, it
computes, exploits and provides accurate traffic forecast information based on
the trains and railway real time status. A heuristic and an exact optimization
algorithm, the latter based on Mixed Integer Linear Programming, are developed
and run independently to introduce redundancy and increase safety. Computational
experience on real-life instances shows that both methods are able to provide either
good or optimal solutions in a very short time (less than a second). A first release of
the system has been in operation since February 2014; the final release is scheduled
to be operational by December 2014.
Keywords: automatic railway traffic control, real-time trains dispatching,
interlocking, optimization algorithms.

1 Introduction

Nowadays, the increasing demand on passengers and freight transport represents
a great opportunity of gain and development for the railway. Actually, railway

Computers in Railways XIV 635

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

doi:10.2495/CR140531

can be considered one of the best way to move goods and people all over
European countries, because of the low costs, high (nominal) regularity and
punctuality as well as the minimal environmental impact, in comparison with other
transportation systems. Nevertheless, because of the financial and economical
situation in Europe, huge investments on the railway infrastructure are not any
longer possible. Therefore, in order to catch the opportunities given by such
promising traffic transport trends, it is essential to improve the utilization of the
current railways system, both on the network infrastructure and the rolling stocks.

An example of problem with wide room for improvements is given by
the management of complex stations (and junctions), which represents highly
interconnected areas of the railways network with of big demand of transit and
services. In this context, the main challenge is to optimally route and schedule
timetabled trains, ensuring quality requirements and operational constraints. This
task corresponds to dynamically allocate the tracks and platforms available at the
station. Restriction and complexity on the problem are given by the scarcity of
the network resources respect to the regular traffic volumes. So far, routing trains
is managed by human dispatchers, leading to sub-optimal utilization of the track
capacity and an increasing conjection in the rest of the network. As opposed, better
result could be reached by developing a simple support system to human operators
for an optimal management of the strongly congested parts of the railway network
(such as complex stations). A further step would be to completely automatized, as
way to make the entire decision process less error-prone and more effective.

The routing problem can arise at different levels of the planning hierarchy,
strategic, tactical and operational levels. Differences come out in terms of time-
horizon, objectives and degrees of freedom as well as accuracy.

The problem at the strategic level is characterized by a long time horizon and the
final goal is to analyze the infrastructural capacity of a railway station as well as to
highlight needs for additional railway resources, such as new tracks and platforms.
This leads to assess limits of the network respect to increasing traffic volumes as
well as the evaluation of new investment alternatives, i.e. the construction and/or
modification of some parts of the existing infrastructure.

In the second level, the tactical planning, the time horizon reduces to mid-term
and the infrastructure is considered fixed. In a top-down approach, the overall
timetable of trains is chosen at macroscopic level, so that it should be assess the
feasibility at the microscopic level. For a station, this problem leads to find routes
and schedules of the timetabled trains, allowing or suggesting minor deviations on
the arrival and departure times.

The last level is the operational planning, where the problem is to adjust
the yearly timetable to deal with the daily disturbances. Late trains on arrival,
accidents, infrastructure maintenance and disruption of the networks easily provide
additional delays and make the tactical planning any more feasible. Adjustments
on scheduling and also on routing are required in order to avoid conflicts and to
minimize the overall deviation from the original plan. Although all these routing
problems can be considered similar, because they roughly represent the same
stuff, there are some differences that need to be taken into account, in order to

636 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

select the best model and algorithm in the three different cases. A key feature
for the operational problem is that the environment is dynamic: the situation
changes quickly, so that a response should be given as fast as possible. For this
reason, respect to this feature, the operational is considered a real-time problem.
As opposed, the strategic and tactical planning are considered off-line. Another
difference is given by the corresponding dimensions: off-line models are usually
bigger, because more complicated situations need to be evaluated, as opposed to
real-time models where dimensions are much smaller because huge deviations
from original plan are not allowed.

The routing (with an inner scheduling) problems at the station for the three
different levels are usually in a top-down order, with the output of a phase being
the input for the successive one. This makes all the three levels quite dependent
between each other. From one side, the solution for the off-line planning has a
big impact on the real-time problem, affecting system response performances in
dealing daily troubles. Robust solution in the off-line step makes the system less
dependent by small perturbations in the real-time, making the latter easier to be
solved. On the other side, analysis at low levels can be important also at high
ones: for example, to really evaluate some investment on the infrastructure, its
performances should be analyzed also in terms tactical and operational responses.

This work focuses on models and algorithms for automatic train dispatching in
large stations. More emphasis will be left for the real-time task as more demanding
in terms of time and more useful in real application.

2 Problem description

This section is devoted to the description of all fundamental objects which play a
central role in train dispatching operations in large stations. Finally, a definition of
real-time train dispatching problem is introduced.

Stations. A station corresponds to a region of the railway network where trains
can stop to perform tasks as embark and alight passengers, meet or pass other
trains, do maintenance operations, etc. To our purpose, a station is composed by
two sets of tracks: the first is given by the tracks, called stopping points, in which
trains can stop to execute some operations; the second contains tracks, called
interlocking-routes, which connect pairs of distinct stopping points. It is possible
that two stopping point can be connected by parallel interlocking-routes. Stopping
points and interlocking routes are called station resources.

In the physical configuration of a station, an interlocking route actually
corresponds to a sequence of electrically controlled tracks called track circuits.
So it may happen that, even if two interlocking routes do not share a stopping
point, the two corresponding sequences of track circuits actually cross each other).
Special stopping points are the line points where the station connects to the railway
line, and platforms where passengers can be embarked or alighted. Line points
typically act as entry points or exit points, depending on the direction of a train
running through them.

Computers in Railways XIV 637

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

Trains. Trains may cross the station, arriving from a distinct station and leaving
to another station; they may originate in the station or they may end their run in the
station. Trains enter the station from a line point and either (i) exit the station from
a different line point or (ii) end their run on a platform. Entry and exit line points
are given in the official timetable and can only be changed by an operator, so they
are always input to the model. In case (ii) the train will magically disappear from
the station after a given time it reaches the platform. Trains originating in a station
start their travel from a platform.

Depending on relevance number of passengers, etc., trains are classified in
categories which affect the cost function. Since our control is in real-time, a train
can be either out of or in the station; in the latter case, it may be in a stopping
point or in an interlocking route. If the train is approaching the station, we assume
given the expected time of arrival to the entry line point. Otherwise, the train is
occupying some station internal resource and we assume given the time when the
train started the occupation of such resource.

Train routes. The alternating sequence of stopping points and interlocking-
routes encountered by the train while traversing the station is called train route.
As said, the origin of the route may be either a stopping point, for instance the
entry line point or a platform (but also intermediate stopping points sometimes
appearing in some stations), or an interlocking route. The destination is either an
exit point or a platform. The train is assumed to occupy an interlocking route for a
fixed time (the running time) known in advance; trains can stop in stopping points,
and a minimum stopping time is also assumed and known.

A route P is feasible for a train i if the following conditions are satisfied:
(i) P contains a platform, unless the train is already exiting the station; (ii) P
is compliant with the station circulation rules and the service type associated to
i; (iii) all resources belonging to P are available when they are expected to be
occupied by i.

Train Schedules. The movements of a train i along its assigned route P are
expressed by a set of time instants in which train i enters each station resource
belonging to P . Given a route, a train schedule is the assignment of an entry time
instant to each resource of the route. In particular, train i can enter an interlocking-
route of P in a time instant greater or equal than the sum of the entry and stopping
times associated to the previous stopping point of the resources sequence. Since
trains cannot stop on interlocking-routes, the entry time instant of a stopping point
has to be equal to sum of entry and traversing times associated to the previous
interlocking route of the sequence. A schedule is feasible if it satisfies last two
conditions.

Conflicts. Distinct trains traversing the station may want to access simultane-
ously incompatible station resources, such as the same platform, or two interlock-
ing routes sharing a stopping point or simply crossing each other (recall that inter-
locking routes may contain several track circuits). Assume r1 and r2 are incom-

638 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

patible resources, and let i, j be two distinct trains, i traversing r1 and j traversing
r2. Let ti and tj be the time i and j enters r1 and r2, respectively. Then, either
tj ≥ ti + δ(i, r1) or ti ≥ tj + δ(j, r2). The quantity δ(q, r) is the separation
time for train q and resource r, and can be infinite (e.g. when r1 and r2 repre-
sent the same platform). Solving a station conflict consists in deciding whether
one resource of the corresponding conflict pair has to be occupied earlier than the
other resource, that is who goes first.

Timetable. The official timetable is a document containing some wanted
features of the movements of trains across the station. In particular, to each train, it
assigns the following items: (i) entry point, (ii) arrival time, (iii) stopping platform,
(iv) departure time, (v) exit point. Items (iv) and (v) are not assigned for trains
terminating in the station; similarly, item (i) and (ii) are not assigned when the
train is originating in the station. Arrival and departure times refer to the time in
which the train is supposed to arrive and departure from the platform. Finally, even
for trains which are simply traversing the station without stopping, a platform (iii)
is always assigned. The official timetable actually can be even more specific, and
for example specify the sequence of interlocking routes traversed by each train.

While entry and exit point cannot be modified by the decision process (typically,
there is only one feasible entry point and one feasible exit point for a given train.
Even when multiple entry and exit points are available, only human dispatchers
may be allowed to change them), a new platform can be assigned to approaching
trains only if the following conditions are satisfied. For each train i, a platform
assignment which differs from timetable can be planned within a fixed time τ
from the time instant in which train i is expected to enter the station. Moreover,
besides satisfying availability and service type requirements, a new assignment
can be decided if it has been requested that a conflict occurring outside the station
authority area (i.e. on tracks connecting adjacent stations) has to be solved.

Cost function. The cost function measures the deviation from the official
timetable. So, late arrivals and departures are penalized, as changes in the assigned
platform. This cost also depends on the train category.

The real-time train dispatching problem (RTD). We are given the official
timetable, a set of (controlled) trains, their current position in the station or their
expected arrival times, the availability status of station resources, a cost function
associated to timetable deviations. We want to find a feasible route assignment
and a feasible schedule for each train such that no train leaves before its official
timetable departure time, no conflict arises in the use of station resources and the
overall cost is minimized.

3 The model

The RTD problem is naturally decomposed in two subproblems which are
intrinsically related. First subproblem consists of enumerating all feasible

Computers in Railways XIV 639

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

trains routings, according to conditions expressed in previous section. Second
subproblem aims to find optimal conflict-free trains scheduling for each given
routing, then it can be reformulated as a pure job shop scheduling problem.
Analogous decomposition has been introduced by authors of [1] for trains traffic
control problem in metro stations. In this section, we discuss this suitable
decomposition for RTD problem.

3.1 Routing problem

We model the station by a digraph D(N,A) with node set N and arc set A, such
that N corresponds to the set of stopping points, whereas A corresponds to the set
of interlocking routes. Let Pi be the train route assigned to train i ∈ T . We denote
by R(Pi) the set of railway resources required by Pi, either arcs in A or nodes in
N . For each train i, Pi is the union of at most two dipaths belonging to D(N,A),
say P in

i and P out
i : P in

i connects the pair of nodes associated to the entry line point
and the platform assigned to i; P out

i connects the pair of nodes corresponding to
the assigned platform and the exit line point of i. If a train i terminates or starts
its running in the station, Pi is given respectively by either P in

i or P out
i . A route

is feasible for train i if it is consistent with the timetable movements required
for i and each resource is available for railway traffic. Moreover, let observe that,
in general, each train can admit more than one feasible route, since each pair of
nodes associated to a line point and a platform could be connected by at least one
path. Given a set of train T , a routing P is a set of feasible routes Pi assigned to
each train i ∈ T . A routing P is feasible if it is compliant with real-time statuses
information of station resources and it can satisfy railway dispatcher requests.

3.2 Job shop scheduling problem

For each r ∈ R(Pi), let tir be the time in which train i enters resource r and let lir
be the minimum time i occupies r. If r corresponds to an interlocking route, then
lir is the running time of i through r. Otherwise, r corresponds to a stopping point
and lir is the minimum stopping time.

For each pair of consecutive resources r, q ∈ R(Pi), we have:

tiq ≥ tir + lir (1)

with equality holding if r is an arc. The condition that train i cannot leave the
platform before the official departure time is also modelled by one constraint of
type (1).

Let e, g ∈ A and let i, j ∈ T . Let assume train i traverses e and j traverses g,
and i enters e before j enters g. Then, let denote by h(i, e, g) the minimum time j
can enter g after i has entered e. Thus, the following constraint has to be satisfied:

tjg ≥ tie + h(i, e, g) (2)

Interlocking-routes e, g are said to be incompatible if h(i, e, g) > 0 for some
i ∈ T ; then, let C be the set of all unordered pairs {e, g} of incompatible routes.

640 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

The vector t corresponds to the schedule for the trains in T . A schedule of train
i corresponds to the subvector ti = (ti1, ti2, . . .). A train schedule ti is feasible
if ti satisfies (1). A schedule t is feasible if ti is feasible for each i ∈ T and the
following disjunctive pair of constraints:

(tjg ≥ tie + h(i, e, g))
∨

(tie ≥ tjg + h(j, g, e)) (3)

is satisfied for each pair i, j ∈ T and {e, g} ∈ C.

Disjunctive graph. The job shop scheduling problem has a useful combinatorial
description expressed by disjunctive graph (for further details, we refer the
reader to [2, 3]). Let G(V, F, S, p) be a disjunctive graph such that: (i) V
contains a node for each operation associated to the occupation of station resource
by a train; moreover V contains a special node, called sink; (ii) F contains
arcs representing the precedences between operations which are expressed by
constraint (1); moreover F contains a directed arc from the sink to each node
representing the occupation by a train of the first resource of its route; (iii) S is
the set of disjunctive arcs pairs representing resources occupation conflicts, which
are modelled by constraint (3); iv) p is a vector of weights associated to all arcs
of disjunctive graph, which correspond to either running times for arcs in F or
separation times for arcs in S.

A selection Q is a set of arcs obtained by choosing at most one arc from each
pair in S. Given a selection Q, let SQ be a subset of S obtained by removing
the disjunctive pairs associated to arcs in Q. Then, the extension of G under
Q is the disjunctive graph G(V, F ∪ Q,SQ). A selection is called complete if
exactly one arc is selected from each disjunctive pair. Moreover, a selection Q
is consistent if digraph G(V, F ∪ Q, p) does not contain any strictly positive
dicycle, i.e. a dicycle such that the sum of weights associated to its arcs is strictly
positive. The well-known relation between scheduling problem and the disjunctive
graph representation is based on the fact that each complete consistent selection
of a disjunctive graph G(V, F, S, p) is in bijection with a feasible schedule (e.g.
see [4]). For a given selectionQ, a forcing is an arc (i, j) belonging to a disjunctive
pair {(i, j), (h, k)} ∈ SQ such thatG(V, F∪Q∪{h, k}) contains a strictly positive
dicycle. Finally, a closure of G under Q is the minimal forcing-free consistent
extension of G(V, F ∪Q,SQ, p) with respect to F ∪Q.

4 Solution approaches

In this section we discuss two solution approaches to RTD problem which exploit
the problem decomposition described in previous section. The first approach
is an exact method based on Mixed Integer Linear Programming (MILP). The
second approach consists of a fast heuristic algorithm based on disjunctive graph
representation.

Computers in Railways XIV 641

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

4.1 Exact method

An optimal solution to RTD problem is computed by retrieving the set of all
feasible routings for trains in T , say P, then computing an optimal schedule t?P for
each P ∈ P. In the following, we outline main phases of the method by omitting
further implementation details.

Set P is obtained by assigning to each train i ∈ T a set of feasible platforms
Ui which is consistent with timetable, real-time statuses information of station
infrastructure and railway dispatcher authority requests. We assume that Ui is a
non-empty set for each i ∈ T , since a platform assignment is even forced by human
dispatcher for trains affected by no platform availability. Then, for each platform
assignment, all feasible trains routes are computed by enumerating suitable paths
of station graph D(N,A), so P is obtained.

For each P ∈ P, we find an optimal schedule t?P by formulating and solving
a MILP problem, called JSS(P). Given P , JSS(P) has continuous decision
variables t which represent the time instants in which each train i ∈ T starts the
occupation of each station resource belonging to its route Pi. As discussed in Sec.
3.2, variables t have to satisfy constraints (1). Moreover, JSS(P) is characterized
by binary variables y which represent resources occupation conflicts. The use
of binary variables y is crucial to define disjunctive constrains reported in (3).
The objective function of the MILP formulation is given by the sum of delays
introduced by scheduled arrival or departure of each train with respected to the
arrival or departure times stated in the timetable. Since a complete formulation
of JSS(P) has a huge number of binary variables and disjunctive constraints,
it cannot be solved in practice. However, we present a suitable separation
algorithm which is practically cost-effective. For further details on optimization
and separation techniques for integer programming, we refers the reader to [5, 6].

Data: JSS′(P)
Result: Optimal solution (t, y)? to JSS(P)
i← 0;
JSSi(P)← JSS′(P);
Compute an optimal solution (t, y)?i to JSSi(P);
while (t, y)?i is not conflict-free do

compute disjunctive pairs of constrains {π1, . . . , πk} violating (t, y)?i ;
JSSi+1(P)← JSSi(P) ∩ {π1, dots, πk};
i← i+ 1;
Compute an optimal solution (t, y)?i to JSSi(P);

end
return (t, y)?i ;

Algorithm 1: Separation algorithm for JSS(P).

The exact method algorthm is reported in Alg. 1. We initialize the separation
algorithm by a partial description of JSS(P), denoted by JSS′(P), which

642 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

contains only continuous variables t and precedence constraints (1). Since
JSS′(P) is a relaxation of JSS(P), if an optimal solution (t, 0)? to JSS′(P)
is feasible for JSS(P), then the solution is also optimal for JSS(P). Otherwise,
we identify a set {π1, . . . , πk} of disjunctive pairs of constraints such that each
πj represents a station resource occupation conflict for a pair of trains. Since
{π1, . . . , πk} violates solution (t, 0)?, we obtain a strengthening relaxation of
JSS(P) by adding {π1, . . . , πk}, so we solve the new relaxation and iterate the
procedure until an optimal solution to JSS(P) is found.

4.2 Heuristic method

The heuristic approach differs from the exact method (previously described) only
for the scheduling phase. In particular, we propose a polynomial combinatorial
algorithm which explain the disjunctive graph representation of the job shop
scheduling problem, as discussed in Sec. 3.2, in order to obtain feasible
trains schedules. Nevertheless the heuristic algorithm does not guarantee any
approximation factor with respect to the optimal value, we will see in next section
that it allows to retrieve a trains scheduling whose objective function value is
very close to the optimum. In the following, we outline the heuristic algorithm
procedure, which is reported in Alg. 2.

The heuristic method invokes two subprocedures, namely closure and
schedule. The closure procedure allows to compute the closure of a disjunctive
graphG(V, F ∪Q,SQ, p) such that the associated digraphG(V, F ∪Q, p) does not
contain strictly positive dicycle. This procedure is based on a recursive algorithm
which, at each step, adds a forcing (if it exists) to arc set F ∪Q, then removes its
corresponding disjunctive pair from SQ. The procedure can identify forcing by a
preliminary computation of the maximum distance between all pairs of nodes in V ,
which is carried out by Floyd-Warshall algorithm on digraphG(V, F ∪Q,SQ,−p)
(e.g. see [7, 8]). For further details on closure procedure, we refer the reader to [1].
Furthermore, schedule procedure allows to compute the scheduling associated to
digraphGi(V, F∪Qi, p) at each iteration i. SinceGi(V, F∪Qi, p) is retrieved by a
closure of a disjunctive graph (i.e. it does not contain any strictly positive dicycle),
schedule computes ti by Dijkstra algorithm on digraph Gi(V, F ∪Qi,−p). Now,
it is easy to check that the introduced heuristic algorithm is correct (a simple proof
is given by induction on the number of iterations of Alg. 2).

The main idea of heuristic method is based on providing a feasible schedule
by iteratively fixing conflict resolution decisions. In particular, at each iteration i,
all resource occupation conflicts corresponding to disjunctive pairs of Gi(V, F ∪
Qi, SQi

, p) are identified. Then, a subset of conflict resolution decisions is fixed
by according priority to a train j? which introduces the minimal measure a[j] of
the expected perturbation behind the timetable. Each value a[j] is computed by
considering two cost components: (i) the first component is given by the overall
delay increase if train j is assumed to have priority over the set of conflicts in
which it is involved; (ii) the second component expresses the expected arrival order

Computers in Railways XIV 643

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

Data: GP(V, F, S, p), T , timetable
Result: feasible trains scheduling t
i← 0;
Gi(V, F ∪Qi, SQi

, p)← closure(GP(V, F, S, p));
ti ← schedule(Gi(V, F ∪Qi, p);
foreach h ∈ T do

compute delay d[h] behind timetable of h on G(V, F ∪Qi);
end
while SQi

6= ∅ do
sort trains in T by expected arrival order on assigned platform;
foreach j ∈ T do

a[j]← 0;
end
L← ∅;
foreach {eh, ek} ∈ SQi

do
a[h]← a[h] + γ · h+ p(eh);
a[k]← a[k] + γ · k + p(ek);
L← L ∪ {h, k}

end
j? ← argminj∈L{a[j]};
foreach {eh, ek} ∈ SQi do

if h = j? or k = j? then
Fi+1 ← Fi ∪ {ej?};
SQi+1

← SQi
\ {eh, ek};

end
end
i← i+ 1;
Gi(V, F ∪Qi, SQi

, p)← closure(Gi(V, F ∪Qi, SQi
, p));

ti ← schedule(Gi(V, F ∪Qi, p);
foreach h ∈ T do

compute delay d[h] behind timetable of h on G(V, F ∪Qi);
end

end
return ti;

Algorithm 2: Heuristic algorithm for JSS(P).

of train j to its first station resource with respect to T . The relative importance
between cost components can be tuned by suitable parameter γ > 0.

5 Computational experience

The computational experiences focuses on set of real-word instances which have
been provided by Bombardier Transportation, Italy. The RTD problem instances

644 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

we have tested are based on real-time data of trains traffic information related to
Tiburtina railway station of Rome (Italy), during day September 9th, 2013. The
computational experience has been carried out on x86-64 GNU/Linux machine
with 4 cores @800MHz and 8GB of RAM. Both solutions approaches have
been implemented in C programming language. The exact method, based on
integer programming, exploits IBM ILOG Cplex 12.5.1 MIP solver [9], then the
separation algorithm has been implemented by Cplex Callable Library callbacks.

In order to test the quality of solutions and the computational performances
of introduced methods, we consider 8 instances which represent different railway
traffic statuses information of Tiburtina station, associated to different time instants
of September 9th, 2013. In particular, each instance refers to a wide timetable
composed by 135 trains that are characterized by different categories and service
type functionalities. The planning time horizon associated to timetable covers 12
hours.

14

13

IV

12

42

41

44

43

10

09

11

20

21

22

24

25

23

28

29

V

IX

X

XII

XIII

XIV

XV

XVI

XVII

XXIX

XXV

Figure 1: Digraph representing Tiburtina railway station of Rome (Italy).

Tiburtina railway station is composed by 30 stopping points and 62 interlocking
routes (a representation of Tiburtina station graph is reported in Fig. 1). The set
of stopping points is partitioned into three subsets which respectively contain line
points, platforms and intermediate points (a special kind of stopping points which
provide interconnections between other stopping points). In particular, Tiburtina
station has 12 line points connecting itself to adjacent national railway lines. On
the south side, it is connected to lines: Direttissima and Lenta (both toward Roma
Termini station), Alta Velocità (toward Roma Prenestina station), Indipendente and

Computers in Railways XIV 645

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

Table 1: Computational experience.

Heuristic Algo Exact Algo

Instance Val(sec) Time(sec) Opt(sec) Time(sec) Gap(%)

1 44416 0.02 44361 0.93 0.12
2 28260 0.01 28060 0.36 0.71
3 31800 0.02 31450 1.04 1.11
4 29560 0.01 29360 0.11 0.68
5 37060 0.02 36790 1.34 0.73
6 30560 0.02 30210 0.73 1.16
7 32860 0.01 32830 0.21 0.09
8 34226 0.02 34176 1.29 0.15

Locale (both toward Roma Casilina station). Moreover, on the north side, Tiburtina
station is connected to lines: Direttissima (toward Roma Settebagni station), Lenta
(toward Roma Salario station), Merci (toward Roma Settebagni station and Roma
Smistamento cargo terminal station). Moreover, Tiburtina station offers a wide
range of railway services, namely passengers transportation, freight transports
and high speed rail services. All station objects of Tiburtina are managed by a
computer-based interlocking system (the corresponding Italian acronym is ACC:
“Apparato centrale computerizzato”) provided by Bombardier Transportation Italy.

Table 1 summarizes computational results by reporting for each instance:
(i) objective function value (second column) and computation time (third column),
both expressed in seconds, for the heuristic method; (ii) optimal solution value
(forth column) and computation time (fifth column), both expressed in seconds,
for the exact method; (iii) relative gap (sixth column) of the heuristic method’s
solution with respect to the optimal solution.

Let us observe that our exact method allows to compute optimal solutions to
real-life instances of the RTD problem given by a train traffic planning horizon of
12 hours and composed by with 135 trains, within a time lapse of 0.75 seconds on
average. Same instances can be solved by our heuristic method within a time lapse
of 20 milliseconds on average. Moreover, let observe that the heuristic method
allows to compute good quality solutions, which differ from the optimal value for
an average 0.6% ratio.

6 Conclusions

The RTD problem play a crucial role in automatic railway traffic control. In this
work, we have introduced a suitable decomposition of the problem in two well-
studied problems of Operations Research. Then, we have designed and exact

646 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

optimization algorithm based on integer programming and heuristic algorithm
based on a combinatorial formulation of the problem.

We have implemented and tested our algorithms on real-life instances based on
railway traffic information related to Tiburtina station of Rome. The computational
experience shows that both methods are able to provide either good or optimal
solutions within a time lapse which is less than one second. This experimental
work takes part into a joint project of Optrail with Bombardier Transportation
Italy, which aims to develop software tools for an efficient and effective real-time
railway traffic management.

References

[1] Mannino, C. & Mascis, A., Optimal real-time traffic control in metro stations.
Oper Res, 57(4), pp. 1026–1039, 2009.

[2] Balas, E., Machine sequencing via disjunctive graphs: An implicit
enumeration algorithm. Defense Technical Information Center, 1969.

[3] Balas, E., Disjunctive programming. Elsevier, volume 5 of Annals of Discrete
Mathematics, pp. 3–51, 1979.

[4] Neumann, K., Schwindt, C. & Zimmermann, J., Project Scheduling With Time
Windows and Scarce Resources: Temporal and Resource-Constrained Project
Scheduling With Regular and Nonregular Objective Functions. Lecture Notes
in Economics and Mathematical Systems Series, Springer Verlag, 2002.

[5] Schrijver, A., Theory of Linear and Integer Programming. John Wiley & Sons,
Inc.: New York, NY, USA, 1986.

[6] Nemhauser, G.L. & Wolsey, L.A., Integer and Combinatorial Optimization.
Wiley-Interscience: New York, NY, USA, 1988.

[7] Goldberg, A., Tardos, É. & Tarjan, R., Network Flow Algorithms. Number
1252 in Computer Science Department: Report STAN-CS, Department of
Computer Science, Stanford University, 1989.

[8] Ahuja, R.K., Magnanti, T.L. & Orlin, J.B., Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc.: Upper Saddle River, NJ,
USA, 1993.

[9] IBM, IBM ILOG CPLEX Optimization Studio 12.5.1 - CPLEX User’s Manual,
2013.

Computers in Railways XIV 647

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

