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Abstract 

In this paper an operation mode, which is based on the determination of some 
patterns for train timetables, is analyzed. For this purpose, a new mathematical 
model is proposed to reach the optimized timetable patterns. In real-world 
applications, a small deviation from traffic analysis is acceptable, where 
passengers should stand more tightly inside the train. As a result, to reach a more 
practical and flexible solution, a fuzzy approach is utilized. At the end, a metro 
line is studied and the optimum patterns are presented and analyzed. It is found 
that in the stop-skipping approach, in comparison with the conventional all-stop 
approach, the number of stops reduces by 39%. By this new method, the number 
of trains that stop at stations differs according to the traffic that is usually 
measured by Passenger per Hour per Direction (PPHPD). Moreover, the 
commercial speed increases, and therefore, the number of required trains in 
operation reduces. However, this method results in a marked increase in the 
passengers’ average waiting time at non-crowded stations. 
Keywords: stop-skipping approach, train timetable patterns, fuzzy mathematical 
model. 

1 Introduction 

Urban railway lines are generally operated in two different classes: short loops 
and long loops. These modes of operations are defined based on the traffic 
analysis. Generally, short loop operation requires more facilities and a more 
complicated operation, but less repair and maintenance costs. In addition to this 
approach, skip-stopping approach, which increases the commercial speed and 
reduces the unwilling stops, can improve the system operation. 
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     The operation plan is one of the studies performed at the beginning of 
defining the project. In the operation plan study, based on the traffic studies as 
the input data, the suitable operation mode is defined for the system. In this 
paper, a new fuzzy mathematical model is proposed to specify a new operation 
mode, by defining different timetable patterns for trains.  
     Fig. 1 shows a simple sample of different operation modes. The squares are 
the symbol of stations. The colored ones indicate the stations that trains intend to 
stop. The hatched ones indicate those stations that are not visited by train and the 
blank ones shows the stations in which trains skips and do not stop for boarding 
and alighting purposes. 
 
 

 

Figure 1: A sample of different operation modes. 

 
     It is necessary to mention that in the third, and fourth modes, different patterns 
are defined. The aim of this paper is to define the number of patterns as well as 
the proper blank squares for different patterns.  

1.1 The effects of the stop-skipping approach 

The effects of stop-skipping approach, which is studied in this paper, can be 
described in two different categories as summarized in the following: 

1.1.1 The effects on the system 
The following items are caused by considering the stop-skipping approach in 
urban railway systems: 

(1) The average number of stops at stations reduces. 
(2) The average traveling time reduces and consequently the average 

commercial speed increases. 
(3) The number of required trains in operation reduces. 
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(4) The operation and maintenance costs during operation life cycle time 
reduces.  

(5) The signaling system and Passenger Information System (PIS) requires 
small modifications to the software. 

(6) The number of parking areas and therefore, the land acquisition cost in 
project construction period reduces. 
 

1.1.2 The effects on passengers 
(1) In non-crowded stations, as some trains skip stopping, the average 

waiting times increases. 
(2) As the commercial speed increases, the passengers’ travelling time 

reduces.  
(3) The passengers should pay attention to the PIS system located at the 

platform, before boarding the train, and should check the stations that  
the arriving train is going to stop. 

(4) In some cases, the passengers have to change the train to reach the 
destination. 
 

1.2 Previous works 

During the past decade, the train scheduling problem has become one of the most 
interesting research topics. Zhou and Zhong [2] introduced a modified Branch 
and bound (BB) algorithm, which contains three methods to reduce the solution 
space in main line railway systems. A new multi objective mathematical model 
for train scheduling problems in main line railways introduced by Ghoseiri et al. 
[1]. Shafia et al. [3] proposed a robust timetabling model, and proposed a 
robustness measure to compute the required buffer intervals. Beside mainline 
train timetabling problem, in urban transport system, Albrecht [4] proposed a two 
level approach to generate demand-oriented timetable, where the optimal train 
frequency and the capacity of trains are first determined and then the schedule of 
trains are optimized. Wang et al. [5] proposed a detailed non-linear bi-level model 
of train movements with stop-skipping and the O-D dependent passenger 
demands, as well as a genetic alg.  
     In this paper, a new formulation is developed which addresses the problem of 
finding the optimum timetable patterns in urban railway systems. As the PPHPD 
is not a crisp value and a limited amount of violation are accepted, a fuzzy 
approach is used to reach a more flexible and practical solution. This method 
offers a more cost-saving and faster transport system. 
     The current paper is organized as follows: In section 2 the problem is defined, 
and a new mathematical model is proposed. In section 3, a fuzzy approach is 
utilized. As the resulted fuzzy model is not linear, the necessary variables as well 
as the required constraints are proposed. Section 4 deals with the validity of  
the proposed mathematical model through a metro line as the case study. Finally, 
the concluding remarks are given at the end to summarize the contribution of this 
paper.  
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2 Problem formulation 

The problem is to find optimum patterns of train’s timetables, so that (1) the 
number of train-stops at stations minimizes, (2) the required headway 
maximizes, (3) the time differences among consecutive patterns minimize. The 
PPHPD in each block section is computed based on the traffic study.  
The PPHPD is used to compute the required headway in each block section. In 
the next step, the required headway in each block section is used to define the 
patterns which determine the stations that trains should skip.  
     In this section, a new mathematical model is proposed. The employed 
notation is shown in Table 1. 

Table 1:  The employed notation. 

Symbol Definition 

N The set of trains, i.e. Maximum number of patterns 

M The set of block sections 

S The set of stations 

  ௝ The crisp value of required headway for block-section jݓ݄

  ෪௝ The fuzzy value of required headway for block-section jݓ݄

ఫതതതതത The upper bound of fuzzy numberݓ݄  ෪௝ݓ݄

௝ The lower bound of fuzzy numberݓ݄  ෪௝ݓ݄

ܴ ௃ܶ 
The time difference between two scenarios (1) a train stops at station J 
for passenger boarding and alighting purposes, (2) a train just passes 
station J with no stop 

MHW Minimum possible headway can be reached by the signaling system 

 ௜௃ A binary variable, equals 1, If train i stops at station J, and 0, otherwiseݔ

HW A variable indicates the headway between consecutive trains 

 
     The first objective is to minimize the trains’ stops at stations. 
     It is necessary to mention that, as the headway reduces the number of required 
trains in operation increases. Therefore, the second objective is to maximize the 
headway. 
     A robust timetable is the one that the delay propagations are in the minimum 
level. Therefore, the third objective is to minimize the differences among 
consecutive patterns. 
     The proposed mathematical model is presented as follows: 
 

ଵܼ	݊݅ܯ ൌ ∑ ∑ ௜௝௝∈ெ௜∈ேݔ 																																															ሺ1ሻ	
	

ଶܼ	ݔܽܯ ൌ  (2)                                                   ܹܪ	
 

ଷܼ	݊݅ܯ ൌ ∑ ∑ ൫∑ ሺ1 െ ௜´௄ሻ௄ஸ௃ݔ െ ∑ ሺ1 െ ௜௄ሻ௄ஸ௃ݔ ൯௜∈ே,௜வଵ௃∈ௌ              (3) 
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     Eq. (1) specifies the first objective function which is to minimize the number 
of train-stops at stations. The second objective function, Eq. (2), maximizes the 
required headway. Eq. (3) is to minimize the differences among consecutive 
trains. 
     Subject to: 
 

ுௐൈ|ே|

∑ ௫೔಻೔∈ಿ
൏ ,௝ݓ݄ ܬ∀ ∈ ܵ                                          (4) 

 
     Inequality (4) defines the stop-skipping patterns to reach the required 
headway for each block section. Note that in this inequality, block-section j is 
just located before station J. 
 

ܹܪ െ ൭෍ሺ1 െ ௜´௄ሻݔ
௄ஸ௃

െ෍ሺ1 െ ௜௄ሻݔ
௄ஸ௃

൱ ൈ ܴ ௃ܶ ൒  		,ܹܪܯ

ܬ∀ ∈ ܵ, ∀݅ ∈ ܰ െ				 ሼ1ሽ         (5) 
 
     In Inequality (5), ∑ ሺݔ௜௄ሻ௄ஸ௃  specifies the number of train stops between 
stations {1, …, J}. 
 

3 Applying the fuzzy approach to the model 

In real-world applications, the PPHPD in each block section is not an exact 
value. Therefore, it is more practical if the parameter 	݄ݓ௝ is supposed to be a 
fuzzy number. It is necessary to mention that, in crisp linear programming, the 
violation of any constraint renders the solution infeasible, but in the mentioned 
case, the role of constraint (4) can be different, where a small but limited 
violation of constraints is accepted. 
     In this paper, the parameter ݄ݓ௝	of the proposed model, is supposed to be 
imprecise. This parameter affects the right-hand side of inequality (4). As the 
objective function assumed to be crisp, the Werner’s approach is applicable.  
The membership function is equal to Eq. (6). 
 

௝ߤ ൌ 1 െ
ಹೈൈ|ಿ|
∑ ೣ೔಻೔∈ಿ

ି௛௪ೕ

௛௪ೕ
, ܬ∀ ∈ ܵ                                     (6) 

 
     Note that in this inequality, block-section j is just located before station J. 
     Furthermore, the membership function of the objective function, ݂௜, is equal 
to Eq. (7). 
 

ீߤ
௜ ൌ

௖೅,೔ି௙భ
೔

௙బ
೔ି௙భ

೔ , ∀݅ ൌ 1, 2, 3                                        (7) 
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where, ்ܿ,௜ equals the objective function value, and ଵ݂
௜ is the  

optimum objective value of the proposed model in the crisp mode and ଴݂
௜ is  

the optimum objective value of the proposed crisp model when the parameter 
௝ݓ݄ ௝ is replaced byݓ݄ ൅  .௝ݓ݄
     Finally, by introducing one new variable, ߛ, the mathematical model with 
fuzzy constraint transforms to crisp model (8). 
     (Model (8): Fuzzy stop-skipping patterns generation mathematical model)  
 

 (9)                                                          ߛ	ݔܽܯ
 

     Subject to: 
 

௃ݓ݄ ൈ ߛ ൅
ுௐൈ|ே|

∑ ௫೔಻೔∈ಿ
൑ ௃ݓ݄ ൅ ,௃ݓ݄ ܬ∀ ∈ ܵ                           (10) 

 
ሺ ଵ݂

ଵ െ ଴݂
ଵሻ ൈ ߛ ൅ ∑ ∑ ௜௝௝∈ெ௜∈ேݔ ൑ ଵ݂

ଵ                            (11) 
 

ሺ ଵ݂
ଶ െ ଴݂

ଶሻ ൈ ߛ െ ܹܪ ൑ ଵ݂
ଶ                                    (12) 

 
ሺ ଵ݂

ଷ െ ଴݂
ଷሻ ൈ ߛ ൅ ∑ ∑ ൫∑ ሺ1 െ ௜´௄ሻ௄ஸ௃ݔ െ ∑ ሺ1 െ ௜௄ሻ௄ஸ௃ݔ ൯௜∈ே,௜வଵ௃∈ௌ ൑ ଵ݂

ଷ  (13) 
 

ሺ ଵ݂
ଷ െ ଴݂

ଷሻ ൈ ߛ ൅ ∑ ൫∑ ൫1 െ ே|௄൯௄ஸ௃|ݔ െ ∑ ሺ1 െ ଵ௄ሻ௄ஸ௃ݔ ൯௃∈ௌ ൑ ଵ݂
ଷ      (14) 

 

     Constraints 3 and 5. 
     By defining the variable ݕ௜௃ ൌ ߛ ൈ  ௜௃ , one can replace the constraint (10)ݔ
with the following new defined linear constraints. 
  

௜௃ݕ ൑ ܯ ൈ  ௜௃                                                 (15)ݔ
 

௜௃ݕ ൑  (16)                                                       ߛ
 

௜௃ݕ ൒ ߛ െܯ ൈ ൫1 െ  ௜௃൯                                       (17)ݔ
 

௜௃ݕ ൒ 0                                                      (18) 

4 Case study: a metro line 

The studied metro line contains 23 stations, 22 block sections and 2 shunting 
areas. Considering the estimated PPHPD in each individual block section of this 
line, the required headway in each of them is computed as shown in Table 2. 
     Table 3 shows the results in two scenarios: (1) Considering constraint (10) as 
the soft and (2) Considering constraint (10) as the hard one. The first row in each 
scenario shows the average number of trains’ stops at stations. Obviously, the 
first objective seeks for minimum number of stops. The second row in each 
scenario indicates the fuzzy objective function value (OFV). 
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Table 2:  The required headway in each block section. 

 ࡶ࢝ࢎ ࡶ࢝ࢎ
Block 

sections ࡶ࢝ࢎ ࡶ࢝ࢎ 
Block 

sections 
0.8 6.4 P O 9.0 68.7 C B 
0.7 5.4 Q P 5.3 40.2 D C 
1.0 7.3 R Q 1.7 13.3 E D 
1.3 10.0 S R 1.4 10.3 F E 
1.8 13.6 T S 1.0 7.8 G F 
2.4 18.4 U T 0.9 6.7 H G 
3.3 25.1 V U 0.8 6.4 I H 
4.6 34.7 W V 0.8 6.3 J I 
6.3 48.1 X W 0.8 6.3 k J 
8.7 66.6 Y X 0.9 7.1 M k 

12.1 92.2 Z Y 0.9 7.0 O M 

Table 3:  Final solutions in different number of patterns. 

N (i.e. number of patterns) 1 2 3 4 5 6 7 

(1) 
Average No. Stop/Train 22 16 14 12 11.8 11.5 11.4 

Fuzzy OFV 0 0.27 0.37 0.45 0.46 0.43 0.48 

(2) 
Average No. Stop/Train 22 16 15 13 12 12 11.7 

Fuzzy OFV 0 0.27 0.32 0.41 0.46 0.41 0.47 

 
     The results can be interpreted as follows: 

1- As the number of patterns increases, the average number of train-stops at 
stations reduces.  

2- Considering constraint (10) as a soft one improves the average final 
optimum solution by 3%. 

3- As the number of patterns increases, passengers face with verity of 
different timetables, and may be more confused at stations. 

     Considering the last issue, and the achieved optimum solutions, the operators 
preferred the solution with four patterns. This solution does not provide some 
trips amongst some of the stations. In the case that, this type of solution is not 
valid for the decision makers, the authors proposed following constraints to be 
added into the Model (8): 
 

∑ ൫ݔ௜௃ ൈ ௜௃ାଵ൯௜∈ேݔ ൌ 1, ܬ∀ ∈ ܵ                                  (19) 
 
     Note that ݔ௜௝ is a binary variable. One can replace ݔ௜௃ ൈ  ௜௃ାଵ by a new binaryݔ
variable ݖ௜௃. Constraint 19 is non-linear and can be replaced with the following 
linear constraints. 

௜௃ݖ ൑  ௜௃                                                      (20)ݔ
 

௜௃ݖ ൑  ௜௃ାଵ                                                    (21)ݔ
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௜௃ݖ ൒ ௜௃ݔ െ ൫1 െ  ௜௃ାଵ൯                                           (22)ݔ
 

௜௃ݖ ൒ 0                                                      (23) 
 
     Adding the above constrains into the model, results the following optimum 
solution (Fig. 2). 
 

 

Figure 2: The optimum solution with four patterns. 

     Note that, the average number of trains’ stops at stations increases from 12 to 
12.5 in the latter case.  

5 Conclusion 

In this paper, an operation mode, which is based on the determination of some 
patterns for train timetables, also known as stop skipping approach, was 
analyzed. To that end, a new mathematical model presented to reach the 
optimized timetable patterns. The traffic analysis is considered as the most 
important input parameter of the model. As a result to reach a better solution, a 
fuzzy approach was proposed. Finally, a real-world case study was studied and 
the optimum patterns were presented and analyzed. 
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