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Abstract 

This paper studies the failure process of the traction converters mounted on some 
trains produced by AnsaldoBreda SpA and operating in the district of the city of 
Naples. Each train is equipped with three traction converters and 23 new trains 
were monitored from their entry in service over a time period of about four 
years. A preliminary analysis of the observed failure data, based on a non-
parametric estimation procedure, showed an overall decreasing trend of the 
failure intensity during the monitoring period, as it is often observed during 
the early life of complex systems undergoing minimal repair. As such, the failure 
process of converters is assumed to be a non-homogeneous Poisson process 
(NHPP) over the covered mileage. Then, NHPP with different decreasing 
intensity functions are considered, and the process that better fits the observed 
data, namely the log-linear process, is chosen to analyse the observed failure 
process. Maximum likelihood estimate of the process parameters is then 
obtained, from which several reliability characteristics are estimated under the 
conservative hypothesis that the failure intensity remains constant beyond 
the end of the observation period. Finally, the probability distribution of the 
annual mileage of the train is derived, that allows the reliability characteristics to 
be estimated in terms of the calendar time, too. 
Keywords: traction converters, reliability analysis, nonhomogeneous Poisson 
process, annual mileage distribution. 
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1 Introduction 

The frequency converter is one of the main parts of the traction power supply 
system (TPSS) and converts adequate traction power from the power company to 
the electric vehicle. Due to the impact of its failures on the reliability of the 
whole TPSS, more converters are mounted on each vehicle in order to guarantee 
a good redundancy in case of failure and give the opportunity, using dedicated 
control logics, to interlace them in order to reduce the harmonic content of the 
absorbed current. 
     In this paper, the failure of the traction converters mounted on some trains 
produced by AnsaldoBreda SpA and operating in the district of the city of 
Naples is analyzed. Each train is equipped with three traction converters which, 
as shown in Figure 1, are fed by the high-voltage grid power line through one 
pantograph and each converter supplies two three-phase asynchronous traction 
motors, namely “M1” and “M2”. 
     The traction converters are very complex systems, constituted by several 
subsystems among which: the Hall effect current transducer, the voltage 
transducer (that measures the input voltage to the converter), the 
voltage transducer (that measures the input voltage to the inverter modules), 
the pre-charge contactor, a number of resistors and six different types of 
electronics boards, the traction control unit (TCU) (that is fed by the low voltage 
system and manage the tractive effort, acceleration and braking), three IGBT 
(insulated gate bipolar transistor) inverter modules (that power the traction 
motors), and the brake chopper (that allows the energy returned by the 
traction motors to be dissipated on the braking resistor). 
     A fleet of new trains was monitored during a time period of about 4 years, 
and a failure mode and effects analysis was carried out by AnsaldoBreda in order 
to detect the most relevant problems and to track converter reliability during the 
operating period. On the basis of the data set, the objective of the present paper is 
to specifically address the modeling of the converter failure process, and to 
derive reliability measures useful to the manufacturer, whilst the analysis of  
 

 

 
 

Figure 1: Block diagram of the traction drive. 
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maintenance times and possible maintenance actions to perform on this system is 
beyond the scope of the paper. In this respect, it is to be noted that the converter 
is a complex system whose faults are usually due to the failure of a single 
(elementary) part, and whose intended function is generally restored by just 
replacing the single failed part by a new one. As such, it is reasonable to assume 
that, upon failure, the converter undergoes a “minimal repair”, which 
(instantaneously) brings it back to an as-good-as-before condition. This 
assumption naturally leads to the class of non-homogeneous Poisson processes 
(NHPP). In particular, in the present application, the process domain is better 
represented by “covered mileage” than by “operating time”, as mileage is the 
variable that better measures the converter usage.  
     A preliminary analysis, based on a non-parametric estimation procedure, 
seems to show an overall decreasing trend of the failure intensity during the 
observation period. This behavior appears to be in keeping with what is often 
observed in the initial phase of the operative life of a system, where the 
substitution of the early-failing (week) components with new ones which are 
likely to be free from manufacturing faults, makes the failure intensity to 
decrease. Note that the overall decreasing of the intensity function is also partly 
due to some external adjustments made to the converters during the initial 
development phase of the whole train, which result in a reduction of the stress 
acting on the converters. 
     Then, a number of NHPP with different decreasing intensity function are 
considered, such as the power-law process [1], the log-linear process [2] and the 
Musa-Okumoto process [3], and the process that better fits the observed data, 
namely the log-linear process, is chosen to analyze the observed process.  
     Maximum likelihood estimate of the process parameters is then obtained. 
Several reliability characteristics, such as the expected number of failures and 
the probability of no failure during a future operating time, are also estimated 
under the conservative hypothesis that the failure intensity remains constant 
beyond the end of the observation period, say X, where the failure intensity is 
equal to the value it had at X. Finally, the probability distribution of the annual 
mileage of the train is derived, that allows one to estimate the reliability 
characteristics in terms of the calendar time too, in order to better plan the 
maintenance actions and to better manage the spare parts inventory. 

2 Reliability analysis of failure process 

The failure processes of 23 new trains were observed from the entry in service of 
each train (starting from 2009, April 1) until 2013 August 31. A total of 59 
converter failures occurred during the observation period, which covers only the 
very early life of the systems that are designed to operate for 30–40 years, 
covering a distance of more than 2 million kilometers. 
     Table 1 gives both the total mileage (in km) ௝ܺ and the annual mileage 
covered by each train ݆ (݆ ൌ 1,… ,23) until 2013 August 31. In Table 2 the 
mileage to converters failure ݔ௜,௝ (݅ ൌ 1,… , ௝݊) measured from the entry in 
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Table 1:  Total mileage ௝ܺ and annual mileage [in km] of each train ݆. 

݆ Train # Total ௝ܺ 2009 2010 2011 2012 2013 

1 201 125,010 2538 0 70,000 0 45,132 

2 202 217,384 18,317 50,610 34,012 70,880 43,565 

3 203 178,234 14,371 54,534 36,284 37,402 35,643 

4 204 171,026 16,931 44,992 48,458 24,514 36,131 

5 206 109,780 23,507 30,207 43,093 12,973 0 

6 207 27,709 20,305 7,404 0 0 0 

7 208 174,214 21,121 49,439 25,215 62,377 16,062 

8 209 134,465 21,107 53,810 36,747 22,801 0 

9 210 58,158 20,501 37,657 0 0 0 

10 211 150,844 22,441 49,665 50,333 28,405 0 

11 212 135,943 15,314 49,636 54,319 16,674 0 

12 213 206,553 24,345 40,215 62,210 31,698 48,085 

13 214 188,465 17,659 60,621 49,620 45,309 15,256 

14 215 179,107 13,834 64,117 49,948 51,208 0 

15 216 184,152 19,603 54,473 47,117 51,816 11,143 

16 217 193,107 13,224 55,464 52,830 63,623 7966 

17 218 201,326 10,579 57,802 56,189 76,756 0 

18 219 221,308 6235 57,801 67,426 50,635 39,211 

19 220 220,125 0 53,800 60,059 73,027 33,239 

20 221 123,989 0 54,788 59,370 9831 0 

21 222 175,119 0 32,238 57,800 52,040 33,041 

22 223 176,867 0 25,973 63,454 72,084 15,356 

23 224 155,893 0 0 47,660 44,098 64,135 
The mileages in italics refer to the case in which the train was not operating during the entire year 

 

service of each train ݆ are given. Unfortunately, in the available data set, no 
information is given about which of the three converters mounted on the train ݆ 
failed at ݔ௜,௝. Thus, for example, we do not know if the two failures of train #202 
refer to the same converter or not. As such, the analysis concerning the converter 
unit has to be derived, as illustrated in the next section, by the analysis based on 
the only observable failure process, i.e. the failure process of train ݆, which is the 
superposition of three identical, but unidentifiable, failure processes. 

2.1 Model selection and parameter estimation 

On the basis of the above observations, we made the reasonable assumption that 
the three failure processes of the converters mounted on the same train are 
independent of each other. We also assume that, due to the complex structure of 
the converter and the type of repair the converter is subjected to (that generally 
consists of the replacement of the failed part with a new one), the repairs are 
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Table 2:  Mileage to converters failure ݔ௜,௝ [in km] for each train ݆. 

݆ Train #  ௝,଼ݔ ଻,௝ݔ ଺,௝ݔ ହ,௝ݔ ସ,௝ݔ ଷ,௝ݔ ଶ,௝ݔ ଵ,௝ݔ
1 201 125,010        

2 202 75,755 121,186       

3 203 31,000 168,852       

4 204 29,144 41,188       

5 206 34,899 86,385       

6 207 300 8376 19,947      

7 208 61,086 128,915 129,266 130,246 130,935    

8 209 70,681 93,743 107,997      

9 210         

10 211 100,383        

11 212 75,090 75,239       

12 213 25,912 68,599 182,990      

13 214 12,193 18,798 18,798 20,350 58,857 102,550 108,592 155,126 

14 215         

15 216 26,632 31,199 48,875      

16 217 29,687 39,979 40,032 67,409 94,064 116,379   

17 218 7686 168,959       

18 219 94,127 94,141       

19 220 151,494 210,968       

20 221 29,685 32,595 32,737      

21 222 22,553 67,594       

22 223 6150 92,151 145,724      

23 224 77,071 78,397       

 

minimal, so that the failure process of each converter is modeled by a non-
homogeneous Poisson process (NHPP)  with intensity function ߣሺݔሻ.  As a result 
of these two assumptions, the observed processes are NHPP with intensity 
function equal to 3ߣሺݔሻ. 
     A nonparametric estimate of the average failure intensity on mileage intervals 
of length Δ ൌ 20,000 km is made by counting the number of failures ௞ܰ 
occurred in the ݇th interval ሺሺ݇ െ 1ሻΔ, ݇Δሻ and applying the formula: 

 
ሚ௞ߣ ൌ ௞ܰ ሺ3 ൉ ⁄௞ሻܯܶ   ,  ݇ ൌ 1, 2, … , 11	,                           (1) 

 
where ܶܯ௞ is the total mileage covered by all of the observed trains during the 
interval ሺሺ݇ െ 1ሻΔ, ݇Δሻ. As shown in Figure 2, the estimated intensity ߣሚ௞ is 
decreasing overall, thus suggesting describing the converter failure process with 
an NHPP with decreasing failure intensity. 
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Figure 2: Nonparametric estimate of the intensity function. 

     The overall decreasing behavior of the intensity function is confirmed by the 
Laplace test that is based, for multiple time-truncated systems, on the test 
statistic [4]: 
 

LA ൌ
∑ ∑ ௫೔,ೕ

೙ೕ
೔సభ

మయ
ೕసభ ି∑ ௡ೕ௑ೕ ଶ⁄మయ

ೕసభ

ට∑ ௡ೕ௑ೕ
మ ଵଶ⁄మయ

ೕసభ

	,																																			(2) 

 
which is distributed as a standard Normal variate under the null hypothesis that 
the intensity function is constant (no trend in the failure data). Large, negative 
values of LA indicate a decreasing trend. The value of the LA statistic relative to 
the observed data is െ1.422, that allows the null hypothesis of no trend to be 
rejected at the significance level of 0.10, and also provides evidence of a 
decreasing trend. 
     Thus, three different NHPP, whose failure intensity can be decreasing, are 
here considered: 

1. The power law process (PLP) [1], whose intensity function ߣሺݔሻ ൌ
ሺߙ/ߚሻሺݔ/ܽሻఉିଵ, ߙ, ߚ ൐ 0, is decreasing for ߚ ൏ 1. The corresponding mean 
number of failures is ܯሺݔሻ ൌ ሺߙ/ݔሻఉ. 

2. The log-linear process (LLP) [2], whose intensity function ߣሺݔሻ ൌ
ߙ ,ሻݔߚexpሺ	ߙ ൐ 0, െ∞ ൏ ߚ ൏ ∞, is decreasing for ߚ ൏ 0. Its mean number 
of failures is ܯሺݔሻ ൌ ሺߚ/ߙሻ	ሾexpሺݔߚሻ െ 1ሿ. 

3. The Musa-Okumoto process (MOP) [3], with decreasing intensity function 
ሻݔሺߣ ൌ ݔߚሺ/ߙ ൅ 1ሻ, ߙ, ߚ ൐ 0, and ܯሺݔሻ ൌ ሺߚ/ߙሻ	lnሺݔߚ ൅ 1ሻ. 
 

     Note that, both in the LLP and the MOP, ߙ is the value of the intensity 
function at ݔ ൌ 0. The parameters of the selected models are then estimated by 
maximizing the log-likelihood function relative to the observed data: 
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ℓሺdata|ߙ, ሻߚ ൌ ∑ ∑ lnൣ3ߣ൫ݔ௜,௝൯൧
௡ೕ
௜ୀଵ

ଶଷ
௝ୀଵ െ ∑ ൫ܯ3 ௝ܺ൯

ଶଷ
௝ୀଵ 	,																			(3) 

 
where the multiplicative factor of 3 is due to the fact that the observed process is 
the superposition of three independent and identical NHPP with intensity 
function ߣሺݔሻ.	The maximum likelihood estimates (MLE) of the parameters of 
the selected models, the corresponding estimated log-likelihood ℓ෠ ≡
ℓሺdata|ߙො,  መሻ, and the value of the Akaike information criterion (AIC) [5] areߚ
given by: 
 

NHPP ߙො ߚመ  ℓ෠ AIC 
PLP 192,001 km 0.8574 -710.086 714.086 
LLP 0.760·10-5/km -0.445·10-5/km -709.233 713.233 
MOP 0.774·10-5/km 0.606·10-5/km -709.345 713.345 

 
     Since, given a set of candidate models for the data, the preferred model is the 
one with the minimum AIC value, then the LLP is chosen and adopted for all the 
following analyses. Note that the difference in the AIC value with respect to the 
MOP is almost negligible. In Figure 3, the nonparametric estimate of the mean 
number of failures at the observed failure times [6] is compared to the MLE of 
 ሻ within the three selected models. For comparative purpose, also the MLEݐሺܯ
of the mean number of failures within the homogeneous Poisson process (HPP) 
with constant intensity function ߣመ ൌ 0.5303 ∙ 10ିହ/km is depicted.  
     We see that both the LLP and the MOP fit the “observed” data very well, 
whereas the PLP is not able to satisfactorily reproduce convexity of the mean 
number of failures. 
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Figure 3: Nonparametric and maximum likelihood estimates of the mean 
number of failures. 
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     Since the exact distribution of the MLE of the LLP parameters is not known, 
confidence intervals on ߙ and ߚ can be obtained by using asymptotic results. In 
particular, we first estimate the approximate covariance matrix ۱ሺߙො,  መሻ which isߚ
the inverse of the estimated negative second-derivative matrix ۸ሺߙො,  መሻ, alsoߚ
known as the Fisher’s information matrix (whose entries are given in the 
Appendix): 

 

۱ሺߙො, መሻߚ ൌ ቆ
0.2989 ∙ 10ିଵଵ െ0.3529 ∙ 10ିଵଵ

െ0.3529 ∙ 10ିଵଵ 0.6193 ∙ 10ିଵଵ
ቇ	.																		(4) 

 
     From the matrix in eqn (4), the estimated standard deviations of ߙො and ߚመ  are 
equal to ߪොሺߙොሻ ൌ 0.173 ∙ 10ିହ/km and ߪොሺߚመሻ ൌ 0.249 ∙ 10ିହ/km, respectively. 
Then, the approximate 0.90 confidence interval for the parameter ߙ, that is 
constrained to be positive, is obtained by using the lognormal approximation for 
 :ොߙ

 
ሺߙො	expሼേݖ.଴ହ	ߪොሺߙොሻ/ߙොሽሻ ൌ ሺ0.523 ∙ 10ିହ, 1.105 ∙ 10ିହሻ		,													(5) 

 
where ݖ.଴ହ is the 0.05 quantile of the standard Normal distribution. The 
approximate 0.90 confidence interval for the parameter ߚ (that is not constrained 
to be positive) is obtained by using the normal approximation for ߚመ: 
 

൫ߚመ േ መሻ൯ߚොሺߪ଴ହ.ݖ ൌ ሺെ0.852 ∙ 10ିହ,െ3.317 ∙ 10ିହሻ		.																		(6) 
 

From the estimated covariance matrix, the approximate standard deviation of 
the MLE of any function ݄ሺߙ,  of the model parameters can be estimated by	ሻߚ
using the Delta method [7]: 

 

ොሺߪ ෠݄ሻ ≅ ቎ቆ
߲݄ሺߙ, ሻߚ

ߙ߲
ቇ
ଶ

อ
ఈෝ,ఉ෡

ොሻߙොଶሺߪ ൅ ቆ
߲݄ሺߙ, ሻߚ

ߚ߲
ቇ
ଶ

อ
ఈෝ,ఉ෡

መ൯ߚොଶ൫ߪ

൅ 2
߲݄ሺߙ, ሻߚ

ߙ߲
∙
߲݄ሺߙ, ሻߚ

ߚ߲
ቤ
ఈෝ,ఉ෡

,ොߙො൫ߪ መ൯൩ߚ

ଵ
ଶ

																																								(7) 

where ߪොሺߙො, መߚ ො andߙ መሻ is the estimated covariance ofߚ  (the entry (1,2) of 
۱ሺߙො,  መሻ). Then, by using the normal or the lognormal approximation for theߚ
distribution of the MLE of ݄ሺߙ,  ሻ, the approximate confidence interval forߚ
݄ሺߙ,  .ሻ can be easily obtainedߚ

3 Reliability prediction 

Once the model has been selected and its parameters have been estimated, any 
reliability characteristic of the converter can be estimated. In particular, we are 
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firstly interested into the expected number of failures that a converter mounted 
on the train ݆ will experience in a future mileage interval ሺ ௝ܺ, ௝ܺ ൅ ∆ሻ of width ∆, 
and in the system reliability during the same future interval. 
     At this aim, we made the conservative assumption that the failure intensity 
ሻݔሺߣ ሻ of each converter decreases with exponential lawݔሺߣ ൌ  ሻ onlyݔߚexpሺ	ߙ
up to the largest observed mileage to failure, say ܺ଴ ൌ max௜,௝ሺݔ௜,௝ሻ ൌ 210,968 
km, and from ܺ଴ up to the (unknown) mileage at which degradation phenomena 
start to become relevant, it remains constant and equal to the value it has at ܺ଴, 
say ߣ଴ ൌ ߚexpሺ	ߙ ∙ 210,968ሻ ൌ 0.2987 ∙ 10ିହ/km. 
     This implies that from ܺ଴ ൌ 210,968 km onwards, that is, during the so-
called “useful life”, the mean mileage between failures is constant and equal to 
MMBF ൌ  .଴. Its MLE is equal to 334,780 kmߣ/1
     The standard deviations of the intensity ߣ଴ are estimated by using the Delta 
method: ߪොሺߣመ଴ሻ ൌ 0.110 ∙ 10ିହ/km, being ߲ߣ଴ ⁄ߙ߲ 	ൌ expሺܺߚ଴ሻ and ߲ߣ଴ ߲ܾ⁄ ൌ
 ଴, based on theߣ ଴ሻ. The approximate 0.90 confidence interval forܺߚ଴expሺܺ	ߙ
lognormal approximation for the distribution of ߣመ଴, results in: (0.151 ∙ 10ିହ/km , 
0.539 ∙ 10ିହ/km).  
     Likewise, the estimate of the approximate standard deviation of the MLE of 
the MMBF is equal to 135,520 km, and the corresponding approximate 0.90 
confidence interval is: (185,522 km, 662,017 km). 
     On the basis of the above conservative assumption on the behavior of the 
intensity function, the expected number of failures in the future mileage interval 
ሺ ௝ܺ, ௝ܺ ൅ ∆ሻ is given by: 

 

ሺܯ ௝ܺ, ௝ܺ ൅ Δሻ ൌ

ە
۔

ۓ
ఈ

ఉ
൛expሾߚሺ ௝ܺ ൅ Δሻሿ െ expሺߚ ௝ܺሻൟ		, ௝ܺ ൅ Δ ൑ ܺ଴

ఈ

ఉ
൛expሺܺߚ଴ሻ െ expሺߚ ௝ܺሻൟ ൅ ሺ ௝ܺ ൅ Δ െ ܺ଴ሻߣ଴	, ௝ܺ ൅ Δ ൐ ܺ଴

    (8) 

 
and the system reliability relative to the same interval is ௝ܴሺ ௝ܺ , ௝ܺ ൅ ∆ሻ ൌ
expሾെܯሺ ௝ܺ, ௝ܺ ൅ Δሻሿ. In addition, the probability distribution of the number of 
failures in ሺ ௝ܺ, ௝ܺ ൅ ∆ሻ is given by: 
 

Prሼ ௝ܰሺ ௝ܺ, ௝ܺ ൅ Δሻ ൌ ݇ሽ ൌ
ൣெೕሺ௑ೕ,௑ೕା௱ሻ൧

ೖ

௞!
	expൣെܯ௝ሺ ௝ܺ, ௝ܺ ൅  (9)						.	ሻ൧߂

 
     In order to better plan the maintenance actions and to better manage the spare 
parts inventory, it can be also useful to estimate the reliability characteristics not 
in terms of a future mileage interval Δ, but rather in terms of a future calendar 
time interval ߬, e.g., one year, starting from the current date. To do this, it is 
necessary to derive the probability distribution of the mileage covered by a train 
during a prefixed calendar time interval. 
     At this aim, we use the annual mileages given in Table 1, limited to the 50 
values relative to the cases in which the train was in operation from the 
beginning to the end of each year, to derive the probability distribution of 
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the annual mileage ܼ. In particular, we assume that ܼ is Weibull distributed with 
probability density function: ݂ሺݖሻ ൌ ሺܾ/ܽሻሺݖ/ܽሻ௕ିଵexpሾെሺݖ/ܽሻ௕ሿ, where the 
scale ܽ and shape ܾ parameters are positive [8]. The Weibull plot in Figure 4 
shows that the Weibull distribution fits quite well the observed annual mileages 
(the coefficient of determination ܴଶ is equal to 0.981). 
     The MLE of the Weibull parameters are ොܽ ൌ 56,184 km and ෠ܾ ൌ 5.29. By 
using these estimates, the Anderson-Darling (AD) goodness-of-fit test is 
performed to analytically check the goodness of fit of the Weibull distribution. 
The AD statistic ܣଶ results in ܣଶ ൌ 0.316 and, when compared to the critical 
value of  0.737 relative to a sample of size 50 and a significance level of 0.05 
[8], shows that the Weibull assumption cannot be rejected.  
     Thus, from the Weibull distribution on the annual mileage, the expected 
number of failures and the system reliability relative to a future calendar time 
interval of  ߬ ൌ 1 year are given by: 

 
௝ሺܯ ௝ܶ, 	 ௝ܶ ൅ 1ሻ ൌ ׬ ௝ሺܯ ௝ܺ, ௝ܺ ൅ ሻݖ ∙ ݂ሺݖሻ	dݖ

ஶ
଴ 	,																						(10) 

௝ܴሺ ௝ܶ , 	 ௝ܶ ൅ 1ሻ ൌ ׬ expሾെܯ௝ሺ ௝ܺ, ௝ܺ ൅ ሻሿݖ ∙ ݂ሺݖሻ	dݖ
ஶ
଴ 	,																(11) 

 
where ௝ܶ is the calendar date of train ݆ at the end of the truncated observed 
mileage ௝ܺ. Table 3 gives the MLE of the reliability characteristics of each 
individual converter mounted on selected trains, relative both to a future mileage 
of  ∆ൌ 60,000 km and to a future calendar time of  ߬ ൌ 1 year. Of course, since 
the intensity function decreases up to ܺ଴ ൌ 210,968 km, the smaller is the current 
mileage ௝ܺ of the train, the larger is the mean number of future failures and the 
lower is the system reliability. 
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Figure 4: Weibull plot of annual mileages. 
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Table 3:  Reliability prediction of each individual converter. 

  Mean number of failures System reliability 
Train # ௝ܺ [km] ∆ൌ 60,000 km ߬ ൌ 1 year ∆ൌ 60,000 km ߬ ൌ 1 year 
201 125,010 0.230 0.201 0.794 0.818 
202 217,384 0.179 0.155 0.836 0.857 
207 27,709 0.354 0.309 0.702 0.735 
210 58,158 0.309 0.270 0.734 0.764 

 
     In particular, for all trains that have currently accumulated at least 210,968 
km, so that the failure intensity of the converter is constant from here on out, the 
estimated mean number of failures of each individual converter during the next 
year is equal to ߣመ଴ ∙ ෠ሼܼሽܧ ൌ 0,155, being the estimated mean annual mileage 
 ෠ሼܼሽ equal to 51.755 km/year. This implies that, during the “useful life”, over aܧ
fleet of 23 trains that operates regularly, the estimated mean number of 
converters failures during the future year is 10.67. 
     Finally, the (constant) mean (calendar) time between failures MCTBF, from 
ܺ଴ ൌ 210,968 km onwards, is equal to 6.47 years of uninterrupted operation. 
However, since each train is planned to operate for 10 hours a day and for 335 
days a year, the (constant) mean (operating) time between failures MOTBF, from 
ܺ଴ ൌ 210,968 km onwards, is equal to 56.665 hours or, equivalently, to 16.91 
years.  

4 Conclusions 

In this paper, the failure process of the traction converters of AnsaldoBreda SpA 
trains operating in the district of the city of Naples has been analyzed under the 
hypothesis that the three converters equipping each train fail independently of 
each other and are minimally repaired. The observed period covers only the early 
life of the converters where the failure processes show a decreasing trend in the 
failure occurrence. The assumption that from the last observed failure onwards 
the failure intensity is constant is then made in order to obtain conservative 
prediction of the system reliability during future operating intervals, given both 
in terms of mileage and time. 

Appendix 

The log-likelihood function in eqn (4) of the LLP relative to multiple time-
truncated systems is: 
 
ℓሺdata|ߙ, ሻߚ ൌ ܰln3 ൅ ܰ	lnߙ ൅ ∑ ∑ ௜,௝ݔߚ

௡ೕ
௜ୀଵ

ଶଷ
௝ୀଵ െ

ଷఈ

ఉ
	∑ ൣexpሺߚ ௝ܺሻ െ 1൧ଶଷ

௝ୀଵ 	,			(12) 

where ܰ ൌ ∑ ௝݊
ଶଷ
௝ୀଵ ൌ 59 is the total number of observed failures. The elements 

of the estimated negative second-derivative matrix ۸ሺߙො,  :መሻ areߚ
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െ
డమℓ

డఈమ
ቚ
ఈෝ,ఉ෡

ൌ
ே

ఈෝమ
		,																																																	    (13) 

െ
డమℓ

డఉమ
ቚ
ఈෝ,ఉ෡

ൌ
ଷఈෝ

ఉ෡య
	∑ ൣexpሺߚመ ௝ܺሻሺߚመଶ ௝ܺ

ଶ െ መߚ2 ௝ܺ ൅ 2ሻ െ 2൧ଶଷ
௝ୀଵ 	,													(14) 

െ
డమℓ

డఈడఉ
ቚ
ఈෝ,ఉ෡

ൌ
ଷ

ఉ෡మ
∑ ൣ1 െ expሺߚመ ௝ܺሻሺ1 െ መߚ ௝ܺሻ൧
ଶଷ
௝ୀଵ 		,																		(15) 

 
where the MLE of ߚ is the (numerical) solution of 
 

∑ ∑ ௜,௝ݔ
௡ೕ
௜ୀଵ

ଶଷ
௝ୀଵ ൅

ே

ఉ෡
∙
∑ ൣୣ୶୮ሺఉ෡௑ೕሻሺଵିఉ෡௑ೕሻିଵ൧
మయ
ೕసభ

∑ ൣୣ୶୮ሺఉ෡௑ೕሻିଵ൧
మయ
ೕసభ

ൌ 0		,												(16) 

 

and  ߙො ൌ
ேఉ෡

ቄଷ∑ ൣୣ୶୮൫ఉ෡௑ೕ൯ିଵ൧
మయ
ೕసభ ቅ

.  
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