
Black-box testing tool of railway
signalling system software with a focus on
user convenience

J.-G. Hwang, J.-H. Baek, H.-J. Jo & K.-M. Lee
Korea Railroad Research Institute (KRRI), Korea

Abstract

A railway signalling system is the control equipment performing vital functions,
and the validation on functional safety of its software is a very important issue.
Recently, various software testing tools have been applied to verify signalling
system software. However, these tools are unable to support black-box testing to
verify the functional safety of embedded signalling system software, and few
black-box testing tools are currently commercialized. Since most of these
commercialized black-box testing tools depend on a testing method through
direct accessing to the target memory under test, there are a lot of difficulties
when applying them to the test. In the case of using the existing tool, it is
possible to test them only if the internal memory addresses values that are
occupied by the executing embedded software. Therefore they are rarely utilized
to verify the embedded software in the actual operating environment. To
overcome these problems, this study developed a black-box testing tool using
communication interfaces which are utilized when actually operating. The real
interface channel is used as an input and monitoring channel for black-box
testing. This approach carries out the test in a manner where the test data are
input and the results are fed back to these interface channels by utilizing
interface channels with other signalling equipment already operating. Boundary
value analysis and equivalence class analysis modules were used to generate test
cases within the developed new testing tool. The pilot of the proposed testing
tool has been completed, and the feasibility study is now in progress with
railway signalling system software in Korea as its test target.
Keywords: railway signalling systems, software testing, black-box testing.

Computers in Railways XIV 99

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

doi:10.2495/CR140081

1 Introduction

The railway signalling system is a vital control system in the railway system.
With recent developments in computing technology, many railway control
functions have increasingly depended on computer software, leading to the
evolution of a more flexible and intelligent railway signalling system. At
the same time, such software programs have been developed to have more
functions and complexity. Meanwhile, software programs are likely to have
many errors and the cost incurred by such errors has increased. Especially, if a
fatal software error occurs during railway operation, it may result in loss of lives.
Accordingly, software verification and validation have become more important.
 As the importance of the validation of railway signalling system software is
highlighted, the software validation procedures and requirements have been
internationally standardized. When a new railway signalling system is developed,
it is required to apply such standard to verify and validate the safety of the
software [1, 2]. Recently, many research activities have been conducted to
develop a railway signalling system software’s verification, validation,
assessment and supporting tools [3–6]. In Korea, testing and validation of
railway signalling system software on the basis of international standards are
required. However, software validation is only at the early stage and software
validation through testing and quantitative analysis has been attempted.
For validation of railway signalling system software, static testing (analysis of
source code), dynamic testing and black-box testing may be used. Among these
three testing methods, the black-box testing tool was developed in this study to
validate the functional safety of railway signalling system software.

Figure 1: Existing testing tool.

 Most commercial software testing tools cannot be used in black-box testing of
railway signalling system’s embedded software for functional safety. Only a few
black-box testing tools for functional safety testing are commercially available.
However, as shown in Figure 1, such commercial black-box testing tools depend

100 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

on direct access to the system’s memory, resulting in many difficulties in
application to actual railway signalling system software. This is because the
internal memory address values utilized or held by the system’s application
software have to be known for testing. Owing to such difficulties and complexity,
they are rarely used in railway signalling system software validation [4, 5].
 In this study, the problems of such existing commercial tools were analyzed
and a new testing tool, which can be easily used in the functional testing of
software, was developed. In other words, unlike existing black-box testing tools
that use test cases based on internal memory access, a functional safety testing
tool is proposed to allow input and analysis of test cases to the relevant software
through an external interface. Such a black-box testing tool allows the
development and analysis of test cases for black-box testing through analysis of
actually used interface protocols, leading to increased user convenience.

2 Structure of proposed testing tool

As explained earlier, the new testing tool is the black-box testing tool for
functional safety testing of railway signalling system’s embedded software. It is
the black-box testing tool with increased user friendliness and convenience.
Existing tools are based on analysis of internal memory address values for
functional safety testing (as shown in Figure 1). The new one proposed in this
study is based on the communication interface actually used in system operation,
to create and analyze test cases for black-box testing (as summarized in Figure 2).

Figure 2: Interface-based black-box testing tool.

 As shown in Figure 2, this tool uses the existing interface channel between
the target system and other devices (such as Ethernet and serial communication)
and analyzes the interface specifications to create test data. Then, it inputs test
data into the actually used interface, receives feedback results and analyzes them.
In other words, the new testing tool can be connected to the existing interface,
injects test data to the target system and receives feedback data from the target
system. Therefore, it can be readily and easily used. In addition, test cases can be

Computers in Railways XIV 101

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

easily created through analysis of the target system’s interface protocol
specifications.
 The proposed black-box testing tool was developed for black-box testing of a
railway signalling system. Test cases are created through analysis of actual
interface specifications. In addition, conventional software black-box testing
methods, such as analysis of boundary values and equivalence area division
methods, can be used to create additional test cases. Test cases created using
conventional black-box testing methods are entered through the actual interface.
Existing tools conduct black-box testing through analysis of the target system’s
internal memory values, but the new system developed in this study uses actual
interfaces, which makes it more user-friendly and leading to increased
convenience of the tool.

Figure 3: Interface-based black-box testing tool’s structure.

Figure 4: Testing the tool’s structure.

102 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

 Input value ranges are received and test data are created through analysis of
such input values that are used in black-box testing. Various actual interfaces,
such as Ethernet and serial communication, are used in testing. For this purpose,
in addition to the black-box testing tool, the multi-interface channel is needed for
connection to the actual interface. Therefore, the new black-box testing tool
proposed in this study consists of a black-box testing module and interface
connection module (as shown in Figure 4). The black-box testing module creates
test cases and receives feedback of test results to determine acceptability. It is a
core part in the actual testing. The multi-interface connection module is the one
for data communication between the testing tool and target system. It sends data
from the testing tool to the target system’s interface and receives data from the
target system to the testing tool’s interface. This multi-interface channel was
designed to support the expansion of interfaces to ensure testing of various
systems in the future. In other words, when a new interface environment is
required, the hardware interface card and data sending/receiving module can be
added.

Figure 5: Scenario for use of testing tool.

 Figure 5 shows the scenario for use of the testing tool developed in this study.
The testing tool user analyses the input data ranges for the target system and
enters such data ranges to the testing tool to automatically create test data. At
that time, three sub-modules, boundary value analysis model, equivalence
analysis mode and decision table module, are used to analyse and generate the
detailed test case based on data input by the user. These modules have already

Computers in Railways XIV 103

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

been developed prior to this study, so in this study these modules are just
imported into developing the black-box testing tool. In addition, the user reviews
such automatically created test cases and controls the execution of test cases. The
target system’s developer or administrator provides information that can be used
in the analysis of input data ranges. In the figure, the coverage measurement
probe insertion function is the black-box testing tool’s function to analyse the
target system’s control module source codes and measure the coverage. This
function will be implemented in the future through additional studies. At present,
this function is at the concept design phase.

3 Implementation

The prototype of the new black-box testing tool proposed in this study was
developed and is now being tested for suitability. The prototype’s test case
creation, testing and analysis modules were designed to be run on a lap-top
computer with Windows 7 installed. The multi-interface channel was designed to
support the Ethernet protocol. Channels that can support serial communication
and others will be developed in subsequent studies. The module for test case
creation and editing through analysis of protocols for interfaces between the
target system and other control devices was based on the international standard
language, TTCN-3, to ensure compatibility. In this study, “OpenTTCN 2012”,
which supports the international standard language, TTCN-3, was used in the
prototype development. Environmental conditions for prototype development are
as follows:

- Operating system: Microsoft Windows 7 Professional.
- Language: Visual Studio 6.0.
- IDE: Eclipse Indigo.
- Other: Eclipse RCP Plugin Development.
- TTCN-3 tool: OpenTTCN 2012.
- Virtual machine: JRE (Java Runtime Environment) 6.0 or higher

version.

 Figure 6 shows a module to create test cases on the basis of the TTCN-3
engine, which shows a window to input parameters for each test case. When
types and values of individual parameters are entered into this window, they can
be used in the black-box testing module.
 Figure 7 shows the structure of the target system and interface for black-box
testing. As shown in this figure, the new black-box testing tool inputs test case
data and receives feedback data through the interface channel and snooping
device. The interface channel was developed to allow expansion of connectivity
with other communication protocols. The interface channel is a device for data
communication between the testing tool and target system. It sends data from the
testing tool to the target system’s interface and it receives data from the target
system to the testing tool’s interface.

104 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

Figure 6: A window to input parameter values.

Figure 7: Connection with target system through interface channel.

 The newly developed testing tool (Figure 7) is interfaced with the interface
channel to input test data to the target system’s communication link and receive
data from target system. For user convenience, it was designed to make access
through the TCP/IP protocol. Figure 8 shows the screen for access to the
interface channel. Figure 9 shows the screen for testing. On completion of each
testing, log files are shown. In the bottom right of the window are listed both
expected values (from analysis of protocol specifications) and actual values
(from analysis of feedback data). This summarizes the test results.

Computers in Railways XIV 105

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

Figure 8: Screen for data input for access to multi-interface channel.

Figure 9: Configuration of case study on developed tool, status of testing and
testing windows.

106 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

 The application testing was carried out through the target system, especially
the on-board signalling system (OBC). This OBC system is operated with
wayside local operation equipment (LCC) like CTC or the ATS system. Figure 9
shows the configuration of application testing using target equipment software
called OBC. The developed black-box testing tool is operated in notebook as
shown in Figure 9 and OBC equipment interfaced with LCC by WIFI. The other
captured windowed located at the bottom of Figure 9 shows the executing
windows when the tests are applied.
 In applying testing, we carried out two kinds of test, as shown in Figure 10.
The first is a conformity test in the case of a stand-alone type of operation of the
target test and the other is the interoperability test in the case of the target
equipment operated with LCC. The base inputted test case is deduced from MSC
(Message Sequence Chart) in the interface protocol. The inputted test case was
modified by internal sub-modules and the final test cases were generated and
inputted to the real interface channel of the target equipment, and compared the
feedback signals from the real interface. Several software errors imbedded in the
target system were found using these tests. The effectiveness and ease of use was
validated by these tests.

4 Conclusion

Recently, many vital functions of a railway signalling system have been realized
by the software program, so it is important to verify the functional safety testing
of such vital software. However, commercial tools designed to be used in
functional safety verification of embedded software are very complex and
difficult to use. Therefore, it is not easily used in functional safety testing of a
railway signalling system. In this study, a new black-box testing approach is
proposed to perform testing through the target system’s actual interface and a
pilot was developed. At present, it is being used in railway signalling software in
order to verify the developed tool. Unlike other tools, it was identified that this
tool can be easily and readily used in the functional safety testing of signalling
software. It is expected that this tool may contribute to improve the software
safety of railway signalling systems.

References

[1] IEC 62279, “Railway Applications – Software for Railway Control and
Protection Systems”, 2002.

[2] IEC 61508-3: Functional safety of electrical/electronic /programmable
electronic safety-related systems - Part 3 Software requirements, 1998.

[3] Jong-Gyu Hwang, Hyun-Jeong Cho, Hyung-Shin Kim, “Design of the safety
assessment tool for train control system software”, Journal of the Korean
Society for Railway, Vol. 11 Issue No. 2, pp. 139-144, 2008.

[4] M. Fewstar, D. Graham: Software Testing Automation: Effective use of test
execution tools, ACM Press, Addison Wesley, 1999.

Computers in Railways XIV 107

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

[5] J.D. Lawrence: Software qualification in safety applications, Reliability
Engineering & System Safety, Vol. 70, No. 2., pp. 167-184, 2000.

[6] Korea Railroad Research Institute, “Development of Technology to Improve
Operation Efficiency and Safety of Train Operation Based ICT”, Annual
Research Report of 2nd year, 2012.

108 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

